
Tripoline:
Generalized Incremental Graph Processing via

Graph Triangle Inequality

Xiaolin Jiang*, Chengshuo Xu*, Xizhe Yin*, Zhijia Zhao, Rajiv Gupta
Computer Science and Engineering

University of California Riverside

∗First three authors contributed equally to this research.

Background

• Streaming graph processing
- A stream of updates (e.g., new edges) are continuously applied to the graph
- E.g., social network, online shopping

2

graph streaming

updates

updates

Ti
m

el
in

e

re-eval. results

Expensive!
Full Evaluation
(from scratch)

Existing Solutions to Streaming Graph Processing

• Incremental evaluation
- Kineograph [EuroSys’12], Naiad [SOSP’13], Tornado [SIGMOD’16], Kickstarter [ASPLOS’17]
- Start the evaluation from results of a prior evaluation, rather than from scratch

3

graph streaming

updates

updates

Ti
m

el
in

e

re-eval. results

lightweight!re-eval.

prior results

incremental eval.
qstanding query

Limitation in Existing Incremental Graph Processing

• Require a priori knowledge of (standing) query

4

graph streaming

updates

updates

Ti
m

el
in

e

re-eval.
results

q

re-eval.

incremental eval.
q Must be the

same query !
standing query

user queryprior results

Limitation in Existing Incremental Graph Processing

• Require a priori knowledge of (standing) query
- A serious issue for vertex-specific queries (e.g., BFS, SSSP, SSWP, etc.)

5

graph streaming

updates

updates

Ti
m

el
in

e

re-eval.
results

BFS(v5)

re-eval.

incremental eval.
BFS(v5)standing query

user queryprior results

Limitation in Existing Incremental Graph Processing

• Require a priori knowledge of (standing) query
- A serious issue for vertex-specific queries (e.g., BFS, SSSP, SSWP, etc.)

6

graph streaming

updates

updates

Ti
m

el
in

e

re-eval.
results

BFS(v7)

re-eval.

incremental eval.
BFS(v5)standing query

user queryprior results

Goal of This Work

• Require a prior knowledge of (standing) query

7

graph streaming

updates

updates

Ti
m

el
in

e

re-eval.
results

q(u)

re-eval.

incremental eval.
q(r)

Could be a
different query!

standing query

user queryprior results

• Incremental evaluation of an arbitrary user query (of the same type)

Key Idea: Graph Triangle Inequality

8

• Properties regarding three different vertices form a triangle
- Inspired the classic triangle inequality

y

z

x

x + y ≥ zfor any x, y, and z

Triangle Inequality in Euclidean Space

dist(r, x)dist(u, r)

x

r

u
dist(u, x)

Distance-based Triangle Inequality in Graphs*

Shortest path
between two nodes

*A sketch-based distance oracle for web-scale graphs [Sarma’10]

dist(u, r) + dist(r, x) ≥ dist(u, x) for any u, r, and x

Key Idea: Graph Triangle Inequality

9

• Graph triangle inequalities exist for many vertex-specific properties

Key Idea: Graph Triangle Inequality

10

• Graph triangle inequalities exist for many vertex-specific properties

width(r, x)width(u, r)

min(width(u, r), width(r, x)) ≤ width(u, x)

x

r

u
width(u, x)

for any u, r, and x

SSWP Triangle

Key Idea: Graph Triangle Inequality

11

• Abstraction with a generalized “Addition” and “Greater Than”

property(r, x)property(u, r)

x

r

u
property(u, x)

property(u, r) ⊕ property(r, x) ≽ property(u, x) for any u, r, and x

Key Idea: Connect Queries with Graph Triangle Inequality

12

• Build constraints between Standing Query and User Query

property(r, x)property(u, r)

x

r

u
property(u, x)

property(u, r) ⊕ property(r, x) ≽for any u, r, and x

q(u)

q(r)

∀ x, x ∈ V

standing query

user query another arbitrary
vertex in the graph

property(u, x)

Graph Triangle Inequality-based Incremental Evaluation

13

inc. eval. of
standing query q(r)

stable results

…

…
any query of
same type!

q(u)

results

triangle inequality-based inc. eval. of q(u)

property(r, x)property(u, r)

x

r

u
property(u, x)

q(u)

q(r)

∀ x, x ∈ V

property(u, r)⊕ property(r, x)

stable results

re-eval.

…

updates

function like
an “adaptor”

Assumptions and Correctness

14

Monotonicity

Async-Safety

• Assumptions: Monotonicity and Async-Safety
- from GraphLab [UAI’10], GRAPE [VLDB’17], Subway [Eurosys’20], Kickstarter [ASPLOS’17], etc.

If vconverged ≼ vinit , then vconverged may replace vinit

Triangle Ineq. vinit are valid – a possible state may actually occur

Even under async execution, vconverged must replace vinit

Complexity: Handling Directed Graphs

15

stable results

…

…

property(r, x)property(u, r)

x

r

u
property(u, x)

q(u)

q(r)

∀ x, x ∈ V

⊕ property(r, x)

stable results

property(r, x)

property(r, u)

inc. eval. of q(r)

inc. eval. of q(u)

property(u, r)

not the same for
directed graphs !

Complexity: Handling Directed Graphs

16

stable results

…

…

property(r, x)property(u, r)

x

r

u
property(u, x)

q(u)

q(r)

∀ x, x ∈ V

⊕ property(r, x)

stable results

property(r, x)

property(u, r)

inc. eval. of
q(r) and q -1(r)

inc. eval. of q(u)

property(u, r)

“reversed”
query

Complexity: Handling Directed Graphs

17

stable results

…

…

property(r, x)

property(u, r)

dual-model
inc. eval. of

q(r) and q -1(r)

property(r, x)property(u, r)

x

r

u
property(u, x)

q(u)

q(r)

∀ x, x ∈ V

⊕ property(r, x)

stable results

inc. eval. of q(u)

property(u, r)

Complexity: Standing Query Selection

18

• Triangle-based Selection
- select the query q(r*) that can minimize the initial values for all possible user queries

• Topology-based Selection
- select the query q(r*) that can maximize the reachability to all possible user queries

property(u, r) ⊕ property(r, x) ≽ property(u, x)

Complexity: Standing Query Selection

19

• Two-Step Standing Query Selection

- Step-1: maintaining K high-degree standing queries continunously and incrementally

- Step-2: given a user query q(u), select one standing query to apply triangle inequality

Implementation

• Tripoline: implemented on top of Aspen [PLDI’19]
• graph streaming: based on compressed tree
• parallel processing: based on Ligra [PPoPP’13]

20

Evaluation Setup

• Machine environment
- Intel Xeon CPU E5-2683 v4 CPU (32 cores) and 512GB memory
- CentOS 7.9 and g++ 8.3.

• Graph queries
- BFS, SSSP, SSWP, Viterbi, SSNP, SSNSP, SSR, Radii
- source vertex: 256 randomly selected vertices

• Real-world large graphs
- LiveJournal (LJ), Twitter (TW), Orkut (OR), Friendster (FR)

• Streaming scenario
- starting ratio of edges: 50%, 60%, 70%
- graph update batch size: 10K
- num. of standing queries: 1-64 (16 by default)

21

Experimental Results

• Speedups of Tripoline over the non-incremental evaluation

22

Graph SSSP SSWP Viterbi BFS SSNP SSR Radii SSNSP

OR-60 2.42x
[0.17s]

33.91x
[0.01s]

37.94x
[0.01s]

1.25x
[0.13s]

29.06x
[0.01s]

10.86x
[0.01s]

1.22x
[2.43s]

1.09x
[0.27s]

FR-60 1.34x
[12.26s]

35.23x
[0.38s]

41.48x
[0.38s]

1.02x
[7.16s]

18.77x
[0.45s]

10.44x
[0.45s]

1.18x
[56.43s]

1.00x
[9.58s]

LJ-60 1.81x
[0.13s]

11.56x
[0.01s]

26.88x
[0.02s]

1.12x
[0.07s]

11.53x
[0.02s]

5.50x
[0.02s]

1.16x
[1.31s]

1.03x
[0.20s]

TW-60 1.95x
[1.45s]

15.97x
[0.13s]

19.14x
[0.13s]

1.56x
[0.94s]

13.42x
[0.14s]

8.32x
[0.15s]

1.15x
[11.85s]

1.18x
[2.27s]

Avg. 1.89x 23.28x 30.52x 1.24x 18.24x 8.83x 1.18x 1.08x

Experimental Results

• Reduction in vertex function activations
- higher activation ratio à lower speedup

23

OR-60 FR-60 LJ-60 TW-60

SSSP 44.4% 61.7% 56% 52.8%

SSWP 1.9e-9 1.3e-8 0.79% 4.0e-8

Viterbi 3.5e-7 6.7e-8 0.95% 1.7e-7

BFS 82.2% 98% 89.4% 65.8%

SSNP 1.9e-7 1.4e-8 0.78% 3.6e-8

SSR 3.3e-7 1.7e-8 0.78% 3.2e-8

Radii 98.9% 91.9% 92.21% 93.9%

SSNSP 98.9% 99.97% 98.58% 94.9%

min-max nature of the SSWP𝑅"#$ =
𝑁𝑢𝑚"#$ 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 − 𝑏𝑎𝑠𝑒𝑑 𝑖𝑛𝑐. 𝑒𝑣𝑎𝑙.

𝑁𝑢𝑚"#$ 𝑛𝑜𝑛 − 𝑖𝑛𝑐. 𝑒𝑣𝑎𝑙.

Table: Vertex Function Activation Ratio

Experimental Results

• Speedup distribution across queries

24
Figure: Speedups of 256 Queries (16 for Radii) on LiveJournal

higly biased slightly biased

nearly uniformed

Experimental Results

• Confirmation of standing query selection heuristics

25
Figure: Correlations between Speedups and property(u,r)

Experimental Results

• Integeration into Differential Dataflow (with Shared Arrangements) [VLDB’20]

26

Table: DD with Triangle Inequality Optimization Table: Reduction of Reduce Operations

Graph Method BFS SSSP SSWP

LJ-100

DD-SA 1.10s 8.41s 4.63s

DD-SA-Tri 1.11s 3.24s 0.52s

Speedup [0.99x] [2.60x] [8.90x]

TW-100

DD-SA 10.69s 58.63s 32.68s

DD-SA-Tri 10.71s 14.72s 7.74s

Speedup [1.00x] [3.98x] [4.22x]

Graph Method BFS SSSP SSWP

LJ-100

DD-SA 9156594 30418846 20622003

DD-SA-Tri 8956638 17570555 6292821

Reduction [1.02x] [1.73x] [3.28x]

DD-SA: DD with shared arrangements enabled (baseline)
DD-SA-Tri: DD with triangle inequality opt.

Conclusion

• Graph triangle inequality is common for vertex-specific graph queries
• It is key to enable generalized incremental evaluation
• Prototyped Tripoline system
• Observed significant speedups for multiple types of graph queries

27

Thank You!

