Tahoe: Tree Structure-Aware High Performance Inference Engine for Decision Tree Ensemble on GPU

Zhen Xie*, Wenqian Dong*, Jiawen Liu*, Hang Liu#, Dong Li*

*Parallel Architecture, System, and Algorithm Lab (PASA Lab)

*University of California, Merced

#Stevens Institute of Technology
Background for Decision Tree Inference

What is the decision tree?

Decision Tree:
Should I accept a new job offer?
Background for Decision Tree Inference

How is the decision tree inference used?

Forest (that includes multiple trees)

- High Parallelism
- High Bandwidth

GPUs

facebook
Microsoft News
RAPIDS
Accelerated with NVIDIA
Motivation

We found three performance problems when traversing a forest on GPU:

- Random memory accesses
- Load imbalance
- Uncoalesced Memory Accesses
- Thread Idling
- Reduction operation
- High Overhead
Motivation

Quantification of Performance Problems

Test decision tree model: a random forest trained by XGBOOST on Higgs dataset.

The forest has 120 trees, and the maximum depth of each tree is 10.

- Global memory access efficiency is only 13.7%
- Uncoalesced memory accesses
- High reduction overhead
- Reduction operation takes up to 53% of total inference time
Motivation

Quantification of Performance Problems

Some threads are assigned with taller trees, causing load imbalance across threads.

Coefficient of variation (CV) = 49.1%, indicating a large variance in execution time across threads.
Three solutions for solving the three performance problems

Adaptive Forest Format
---Probability-based node rearrangement
---Similarity-based tree rearrangement

Multiple Inference Strategies to Adapt to Various Tree Topologies
---Direct strategy
---Shared forest strategy
---Splitting shared forest strategy

Performance Modeling to Choose Optimal Inference Strategy

Uncoalesced Memory Access
Load Imbalance
High Reduction Overhead
Human Efforts
Adaptive Forest Format

Probability-based node rearrangement

Before node rearrangement

The right child node (V_{23}) has higher possibility to be visited than the left child node (V_{22}).

After node rearrangement

The two children nodes are swapped.
Adaptive Forest Format

Similarity-based tree rearrangement

We claim two trees are similar, when the two trees tend to be traversed using the similar paths.

Similarity of $[T1, T2]$ is 0.14
Similarity of $[T2, T3]$ is 0.75
Similarity of $[T1, T3]$ is 0.59
Design of Inference Strategies

- Introduce multiple Inference strategies to avoid reduction and make best use of shared memory
- How should we place input samples and trees into shared memory?

GMEM: global memory SMEM: shared memory

The depiction of different inference strategies. The usage of shared memory is highlighted in yellow.
We study the performance of the three inference strategies proposed by us and one existing inference strategy.

Red squares indicate the best performance.

Conclusion: No single strategies can perform best in all datasets with different batch sizes, datasets, and forests.
Performance modeling is used to decide which inference strategy should be used for best performance.

\[
T_{\text{SSEM}} = \frac{S_{\text{sample}}}{BW_{\text{WSMEM}}} + \frac{D_{\text{tree}} \times N_{\text{trees}} \times S_{\text{att}}}{BW_{\text{RSMEM}}}
\]

\[
T_{\text{GMEM}} = \frac{S_{\text{sample}}}{BW_{\text{RPMEM}}} + \frac{D_{\text{tree}} \times N_{\text{trees}} \times S_{\text{node}}}{(BW_{\text{RPGMEM}}/2)}
\]

Direct method

\[
T_{\text{GMEM}} = \frac{D_{\text{tree}} \times N_{\text{trees}} \times S_{\text{node}}}{BW_{\text{RPGMEM}}} + \frac{D_{\text{tree}} \times N_{\text{trees}} \times S_{\text{att}}}{BW_{\text{RPGMEM}}}
\]

Shared data

\[
T_{\text{SSEM}} = \frac{D_{\text{tree}} \times N_{\text{trees}} \times S_{\text{node}}}{BW_{\text{RPGMEM}}} \quad \text{(BW_{RPGMEM}/2)}
\]

\[
T_{\text{GMEM}} = \frac{D_{\text{tree}} \times N_{\text{trees}} \times S_{\text{att}}}{BW_{\text{RPGMEM}}}
\]

Shared forest

Splitting shared forest

More details can be found in our paper.

- Performance modeling is used only once at each batch
- Performance modeling is highly lightweight
 - It takes up to 3% of an inference time
Evaluation

Platform

- A high-end server with 24 Intel Xeon E6-2760 v3 CPU cores running at 2.30GHz;
- Three generations of GPU
 - Tesla K80 (Kepler), Tesla P100 (Pascal) and Tesla V100 (Volta).

Input Datasets

- 15 datasets from UCI repository and LIBSVM
- 70% of each dataset is used for training and 30% is used for inference.

Baseline (state-of-the-art an industry quality)

- A high-throughput tree library (FIL) in NVIDIA RAPIDS suite.
Evaluation

Overall Performance

<table>
<thead>
<tr>
<th>Batch size = 100K</th>
<th>Batch size = 100</th>
</tr>
</thead>
</table>

- For the high parallelism task, Tahoe introduces 5.31x, 3.67x and 4.05x speedup on average on three GPUs;
- For the low parallelism task, Tahoe introduces 2.34x, 1.52x and 1.45x speedup on average on three GPUs.
Evaluation

Quantifying memory coalescence.

With Tahoe, the global memory read throughput is improved from 62.4 GB/s to 174.7 GB/s on K80, 98.8 GB/s to 314.0 GB/s on P100, and 112.4 GB/s to 378.5 GB/s on V100.

Quantifying load imbalance.

<table>
<thead>
<tr>
<th>GPUs</th>
<th>High parallelism tasks</th>
<th>Low parallelism tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A.C.V. of FIL</td>
<td>A.C.V. of Tahoe</td>
</tr>
<tr>
<td>K80</td>
<td>47.2%</td>
<td>13.1%</td>
</tr>
<tr>
<td>P100</td>
<td>51.3%</td>
<td>16.2%</td>
</tr>
<tr>
<td>V100</td>
<td>54.6%</td>
<td>15.9%</td>
</tr>
</tbody>
</table>

A bigger forest gets more performance benefit from load balancing.

Quantifying effectiveness of removing blockwise reduction.

Tahoe removes blockwise reduction for 27 cases from 45 cases.
Conclusions

• We reveal three common performance problems in decision tree inferences

• We introduce Tahoe, an inference engine on GPU that considers the common paths of tree traversal and the similarity of tree topologies to enable high performance decision tree inference

• Tahoe largely outperforms an industry-quality inference engine
 – More than 3x speedup for high parallelism tasks on three generations of GPUs
 – More than 1.4x speedup for low parallelism tasks on three generations of GPUs
Thank you and questions?

Tahoe: Tree Structure-Aware High Performance Inference Engine for Decision Tree Ensemble on GPU

Zhen Xie zxie10@ucmerced.edu
Dong Li dli35@ucmerced.edu