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Background for Decision Tree Inference

What is the decision tree?
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Background for Decision Tree Inference

How is the decision tree inference used?
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Motivation

We found three performance problems when traversing a forest on GPU
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Motivation

Quantification of Performance Problems

Test decision tree model: a random forest trained by XGBOOST on Higgs dataset.

The forest has 120 trees, and the maximum depth of each tree is 10.
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Motivation

Quantification of Performance Problems
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Some threads are assigned with taller trees,
1 causing load imbalance across threads.
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Tahoe Framework Overview

Three solutions for solving the three performance problems

Adaptive Forest Format
---Probability-based node rearrangement
---Similarity-based tree rearrangement

Multiple Inference Strategies to Adapt to Various Tree Topologies
---Direct strategy
---Shared forest strategy —_—
---Splitting shared forest strategy

Performance Modeling to Choose Optimal
Inference Strategy
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Adaptive Forest Format

Probability-based node rearrangement

Before node rearrangement

The right child node (IV23) has higher
possibility to be visited than the left child
node (V22).
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Adaptive Forest Format
Similarity-based tree rearrangement

We claim two trees are similar, when the two trees tend to be traversed using the similar paths

Before tree rearrangement

[Tree2 Tree3, Treel]

Similarity of [T1, T2] is 0.14
Similarity of [T2, T3] is 0.75
Similarity of [T1, T3] is 0.59
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Design of Inference Strategies

* Introduce multiple Inference strategies to avoid reduction and make best use of
shared memory

* How should we place input samples and trees into shared memory?
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! Forest: Direct method F01 st Shared forest method # Forest; Splitting shared forest method
| Treel | Tree2 Tree m I» G\'IE\II Tree 1 I Tree 2 I Treem |- GVIE\G;I Tree set 1] Tree set1 I’l'xee setﬁ» GVIEVI

§ t. 7t t t Pre-fetch i A C TA handles multiple tr ees
= - t m :
: Reduction free E: forest i Pre_fetch k treesinto SNMEN :

: o]l Tre1 | Tre2 | .. | Trek |- SMEM
i| Sample 1| Sample 2 Sample r G\’IEV]: Tree 1 I Tree 2 I Tree m I~ SMEM: — ;
: — 1" ti

i| Samples are processed :: . BN Samples:

: by batch Thread handles ‘t1 L/ . 5] Reduction free =E IBQEI: GVIEVI
: Samples: sample independently i Sa 7 Thread handles sample independently: B

E : 'Bb ) bagln’k  Global reduction

;| Batch 1 | Batch 2 «. |Batchn/ ll» GVIE\]: Sample 1| Sample ZI Sample nl» GVIE\I { =

The depiction of different inference strategies. The usage of shared memory is highlighted in yellow.
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Design of Inference Strategies

We study the performance of the three inference strategies proposed by us and one
existing inference strategy
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Performance comparison of the four inference strategies using 15 datasets

Conclusion: No single strategies can perform best in all datasets with different batch sizes,

datasets, and forests.
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Performance Modeling for Tree Inference

Performance modeling is used to decide which inference strategy should be used for
best performance.

Shared data : Direct method : Shared forest Splitting shared forest
S Diree * N, Sare : :
TsmEM = sample + tree ¥ Ntrees * Qatt  Toren = D¢ree * Ntrees * Snode P _ Nyodes * Ntrees * Snode + Diree * Nirees * Snode
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COA COA : : NCOA : BW R * N _batch BX
BW_RGviEM (BW_R¢yiem) /2 : BW_R GMEM

H GMEM
GMEM H

More details can be found in our paper.
« Performance modeling is used only once at each batch

« Performance modeling is highly lightweight
» |t takes up to 3% of an inference time
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Evaluation

Platform
 Ahigh-end server with 24 Intel Xeon E6-2760 v3 CPU cores running at 2.30GHz;

* Three generations of GPU
« Tesla K80 (Kepler), Tesla P100 (Pascal) and Tesla V100 (Volta).

Input Datasets
* 15 datasets from UCI repository and LIBSVM

« 70% of each dataset is used for training and 30% is used for inference.

Baseline (state-of-the-art an industry quality)
* Ahigh-throughput tree library (FIL) in NVIDIA RAPIDS suite.
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Evaluation
Overall Performance e
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For the high parallelism task, Tahoe introduces 5.31x, 3.67x and 4.05x speedup on

average on three GPUs;
For the low parallelism task, Tahoe introduces 2.34x, 1.52x and 1.45x speedup on

average on three GPUs.
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Evaluation

Quantifying memory coalescence.

With Tahoe, the global memory read throughput is improved from 62.4 GB/s to 174.7 GB/s on
K80, 98.8 GB/s to 314.0 GB/s on P100, and 112.4 GB/s to 378.5 GB/s on V100.

Quantifying load imbalance.

High parallelism tasks

Low parallelism tasks

GPUs A.CV.of FIL | A.CV. of Tahoe | A.CV.of FIL | A.C.V. of Tahoe
K80 47.2% 13.1% 36.4% 10.8%
P100 51.3% 16.2% 42.9% 13.5%
V100 54.6% 15.9% 44.7% 12.5%

A bigger forest gets more
performance benefit from
load balancing.

Quantifying effectiveness of removing blockwise reduction.

Tahoe removes blockwise reduction for 27 cases from 45 cases.
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Conclusions

* We reveal three common performance problems in decision tree
inferences

* We introduce Tahoe, an inference engine on GPU that considers the
common paths of tree traversal and the similarity of tree topologies to
enable high performance decision tree inference

» Tahoe largely outperforms an industry-quality inference engine
— More than 3x speedup for high parallelism tasks on three generations of GPUs
— More than 1.4x speedup for low parallelism tasks on three generations of GPUs
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Thank you and questions?

Tahoe: Tree Structure-Aware High Performance Inference Engine for Decision Tree
Ensemble on GPU

http://zhen-xie.com/papers/EuroSys'21.pdf

Zhen Xie zxie10@ucmerced.edu
Dong Li dli35@ucmerced.edu
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