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Traditional Memory Provisioning

● Traditional working set model [Denning, 1968]
● Requires a set of pages in memory to avoid thrashing

● Forced to provision for peak memory usage
● Memory wasted outside the peak usage
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Elastic Applications

● Performance continuously improves with additional memory
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Provisioning Elastic Applications

● Potential to improve throughput by utilizing more memory

● Dynamically adjust application memory usage to availability

● Adjust memory usage in the OS?
● OS lacks domain knowledge of memory usage

● Adjust memory directly in the application?
● Memory abstractions hinder application memory management
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Abstraction Problems

● Static settings forced to control physical memory usage
● i.e. JVM heap size

Layer Abstracts Issue

OS Physical Memory Require Static Settings
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Abstraction Problems

● Physical memory optimistically retained
● Not returned to the OS

Layer Abstracts Issue

OS Physical Memory Require Static Settings

JVM Allocation + Reclamation Retain Physical Memory



7

Abstraction Problems

● Evicted memory sits unusable as garbage

Layer Abstracts Issue

OS Physical Memory Require Static Settings

JVM Allocation + Reclamation Retain Physical Memory

Spark Partition Input Data + 
Eviction

Uncoordinated Reclamation
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Abstraction Problems: Example

● Cannot adapt to changes in memory demand
● Must provision for peak usage
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Summary

● Memory abstractions unnecessarily limit elastic applications
● Static settings unable to adapt
● Problem made worse by multiple layers of abstraction
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Summary

● Memory abstractions unnecessarily limit elastic applications
● Static settings unable to adapt
● Problem made worse by multiple layers of abstraction

● M3 Goal: improve throughput and memory utilization
● Bridge memory abstractions
● React to memory demand and availability
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Outline

● Memory Management Issues in Elastic System Stacks

● M3 Design
● Signal handling
● Adaptive allocation protocol
● Monitor

● Evaluation

● Conclusion
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M3 Design Overview

● Remove static memory settings

● Monitor: send signals when memory reaches a threshold
● Low threshold: early warning, return what you can
● High threshold: nearing memory exhaustion

● Signal handler: reclaim and return memory

● Adaptive allocation protocol: slow application memory growth
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● End-to-end argument [Saltzer, 1984]
● Applications implement all policy

● Utilize existing memory reclamation mechanisms
● GC, cache eviction, etc

JVM Go Runtime Spark Memcached

LOC Modified 220 50 250 170

Practical Approach
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● Applications register signal handler

Signal Handling

OSMonitor

JVM

Spark
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● Monitor sends out signal

Signal Handling

OSMonitor

JVM
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● Application reclaims memory
● Spark evicts data blocks

Signal Handling

OSMonitor

JVM

Spark Evict
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● Notify lower layer when memory
 reclamation completes
● Spark calls JVM GC API

Signal Handling

OSMonitor

JVM

Spark

GC API

Evict
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● Lower layer reclaims memory
● JVM runs a GC cycle

Signal Handling

OSMonitor

JVM

Spark

GC

GC API

Evict
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● Return memory to OS
● JVM uses madvise syscall

Signal Handling

OSMonitor

JVM

Spark

madvise

GC

GC API

Evict
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Adaptive Allocation Protocol

● Goal: slow memory growth to prevent exhaustion

● Dynamically adjust allowed allocation rate
● Allowed allocations grow memory

● Disallowed allocations reclaim memory before continuing
● No correctness issues or complex modifications

int alloc(size_t size) {
  if (!allow()) {
    evict(size);
  }
  // continue allocation path
}
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● Upon receiving a high signal allow rate is set to 0%

● Epoch: time taken to handle a signal

● NUMepochs: user parameter to control recovery

Adaptive Allocation Protocol
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● Reward efficient reclamation
● Fast reclamation → small epoch → more allocations allowed

● Memory demand is respected
● More allocations → more allowed allocations → memory growth 

Adaptive Allocation Protocol
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● Goal: maximize memory utilization while avoiding exhaustion

● Dynamically adjust high and low thresholds

● Lower when usage stays high
● Slow reclamation requires

earlier signals

● Raise when usage stays low
● Later signals allow for higher

memory utilization

Monitor
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Outline

● Memory Management Issues in Elastic System Stacks

● M3 Design
● Signal handling
● Adaptive allocation protocol
● Monitor

● Evaluation

● Conclusion
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Evaluation Methodology

● Cluster of 9 servers, each with 64GB memory and 16 cores

● Spark + JVM : PageRank, n-weight, k-means
● HiBench [Huang et al. 10]

● Go Cache: runs a mixed read and write benchmark 

● 16 Workloads
● Combination of jobs with different scheduling

● Measure average speedup of each application’s completion time
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Configurations

● Default
● All parameters set to default values 

● Global Optimal
● Minimize average throughput of all workloads
● Knowledge and tuning of all possible job combinations

● Oracle
● Optimize jobs individually for each workload
● Individual tuning and reconfiguration for each job scheduling 

● Oracle with Spark Parameters
● Further tune unadvised parameters
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Results

● Oracle with Spark Conf: 1.6x average, 3.1x best case

● Global Optimal: 1.9x average, 3.4x best case

C: Go Cache    M: k-means    W: n-weight    P: PageRank
Number represents time between job arrival
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Unmodified Execution

28
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M3 Execution

29
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Worst Case

● Oracle with Spark Configuration
● 3.8% slower on average, 7.0% worst  case

C: Go Cache    M: k-means    W: n-weight    P: PageRank
Number represents time between job arrival
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Limitations

● Cannot guarantee optimal memory distribution
● Distribution is decentralized

● Requires cooperative applications
● Faithful implementation of policies
● Not withholding memory after recieving a signal
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Related Work
● Memory Distribution among Virtual Machines

● Ballooning [Waldspurger 02], App. Ballooning [Salomie et al. 13]
● Resource deflation [Sharma et al. 19]
● MemOpLight: among containers [Laniel et al. 20]

● MM coordination
● JVM resizing: [Alonso & Appel 90], CRAMM [Yang et al. 06]
● GC coordination: Taurus [Maas et al. 16]

● Uniqueness of M3:
● Cross all memory abstractions in elastic applications
● End-to-end design
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Concluding Remarks

● Data center applications suffer due to abstractions
● Multiple uncoordinated layers
● Fall back to static settings

● M3 bridges memory abstractions
● Coordinates memory management
● Dynamically adjusts to changes in memory demand

● Open sourced at: https://github.com/dsrg-uoft
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