
M3: End-to-End Memory Management
in Elastic System Software Stacks

David Lion, Adrian Chiu, Ding Yuan
University of Toronto

2

Traditional Memory Provisioning

● Traditional working set model [Denning, 1968]
● Requires a set of pages in memory to avoid thrashing

● Forced to provision for peak memory usage
● Memory wasted outside the peak usage

3

Elastic Applications

● Performance continuously improves with additional memory

4

Provisioning Elastic Applications

● Potential to improve throughput by utilizing more memory

● Dynamically adjust application memory usage to availability

● Adjust memory usage in the OS?
● OS lacks domain knowledge of memory usage

● Adjust memory directly in the application?
● Memory abstractions hinder application memory management

5

Abstraction Problems

● Static settings forced to control physical memory usage
● i.e. JVM heap size

Layer Abstracts Issue

OS Physical Memory Require Static Settings

6

Abstraction Problems

● Physical memory optimistically retained
● Not returned to the OS

Layer Abstracts Issue

OS Physical Memory Require Static Settings

JVM Allocation + Reclamation Retain Physical Memory

7

Abstraction Problems

● Evicted memory sits unusable as garbage

Layer Abstracts Issue

OS Physical Memory Require Static Settings

JVM Allocation + Reclamation Retain Physical Memory

Spark Partition Input Data +
Eviction

Uncoordinated Reclamation

8

Abstraction Problems: Example

● Cannot adapt to changes in memory demand
● Must provision for peak usage

9

Summary

● Memory abstractions unnecessarily limit elastic applications
● Static settings unable to adapt
● Problem made worse by multiple layers of abstraction

10

Summary

● Memory abstractions unnecessarily limit elastic applications
● Static settings unable to adapt
● Problem made worse by multiple layers of abstraction

● M3 Goal: improve throughput and memory utilization
● Bridge memory abstractions
● React to memory demand and availability

11

Outline

● Memory Management Issues in Elastic System Stacks

● M3 Design
● Signal handling
● Adaptive allocation protocol
● Monitor

● Evaluation

● Conclusion

12

M3 Design Overview

● Remove static memory settings

● Monitor: send signals when memory reaches a threshold
● Low threshold: early warning, return what you can
● High threshold: nearing memory exhaustion

● Signal handler: reclaim and return memory

● Adaptive allocation protocol: slow application memory growth

13

● End-to-end argument [Saltzer, 1984]
● Applications implement all policy

● Utilize existing memory reclamation mechanisms
● GC, cache eviction, etc

JVM Go Runtime Spark Memcached

LOC Modified 220 50 250 170

Practical Approach

14

● Applications register signal handler

Signal Handling

OSMonitor

JVM

Spark

15

● Monitor sends out signal

Signal Handling

OSMonitor

JVM

Spark

High Threshold

Low Threshold

P
h
y
si

ca
l
M

e
m

o
ry

16

● Application reclaims memory
● Spark evicts data blocks

Signal Handling

OSMonitor

JVM

Spark Evict

17

● Notify lower layer when memory
 reclamation completes
● Spark calls JVM GC API

Signal Handling

OSMonitor

JVM

Spark

GC API

Evict

18

● Lower layer reclaims memory
● JVM runs a GC cycle

Signal Handling

OSMonitor

JVM

Spark

GC

GC API

Evict

19

● Return memory to OS
● JVM uses madvise syscall

Signal Handling

OSMonitor

JVM

Spark

madvise

GC

GC API

Evict

20

Adaptive Allocation Protocol

● Goal: slow memory growth to prevent exhaustion

● Dynamically adjust allowed allocation rate
● Allowed allocations grow memory

● Disallowed allocations reclaim memory before continuing
● No correctness issues or complex modifications

int alloc(size_t size) {
 if (!allow()) {
 evict(size);
 }
 // continue allocation path
}

21

● Upon receiving a high signal allow rate is set to 0%

● Epoch: time taken to handle a signal

● NUMepochs: user parameter to control recovery

Adaptive Allocation Protocol

100%

0%

Epochs Since High Threshold
Signal Received

A
llo

w
 R

a
te

0 1 2 NUMepochs3

22

● Reward efficient reclamation
● Fast reclamation → small epoch → more allocations allowed

● Memory demand is respected
● More allocations → more allowed allocations → memory growth

Adaptive Allocation Protocol

100%

0%

Epochs Since High Threshold
Signal Received

A
llo

w
 R

a
te

0 1 2 NUMepochs3

23

● Goal: maximize memory utilization while avoiding exhaustion

● Dynamically adjust high and low thresholds

● Lower when usage stays high
● Slow reclamation requires

earlier signals

● Raise when usage stays low
● Later signals allow for higher

memory utilization

Monitor

Top

High Threshold

Low Threshold

P
h

y
si

ca
l
M

e
m

o
ry

24

Outline

● Memory Management Issues in Elastic System Stacks

● M3 Design
● Signal handling
● Adaptive allocation protocol
● Monitor

● Evaluation

● Conclusion

25

Evaluation Methodology

● Cluster of 9 servers, each with 64GB memory and 16 cores

● Spark + JVM : PageRank, n-weight, k-means
● HiBench [Huang et al. 10]

● Go Cache: runs a mixed read and write benchmark

● 16 Workloads
● Combination of jobs with different scheduling

● Measure average speedup of each application’s completion time

26

Configurations

● Default
● All parameters set to default values

● Global Optimal
● Minimize average throughput of all workloads
● Knowledge and tuning of all possible job combinations

● Oracle
● Optimize jobs individually for each workload
● Individual tuning and reconfiguration for each job scheduling

● Oracle with Spark Parameters
● Further tune unadvised parameters

27

Results

● Oracle with Spark Conf: 1.6x average, 3.1x best case

● Global Optimal: 1.9x average, 3.4x best case

C: Go Cache M: k-means W: n-weight P: PageRank
Number represents time between job arrival

28

Unmodified Execution

28

29

M3 Execution

29

30

Worst Case

● Oracle with Spark Configuration
● 3.8% slower on average, 7.0% worst case

C: Go Cache M: k-means W: n-weight P: PageRank
Number represents time between job arrival

31

Limitations

● Cannot guarantee optimal memory distribution
● Distribution is decentralized

● Requires cooperative applications
● Faithful implementation of policies
● Not withholding memory after recieving a signal

32

Related Work
● Memory Distribution among Virtual Machines

● Ballooning [Waldspurger 02], App. Ballooning [Salomie et al. 13]
● Resource deflation [Sharma et al. 19]
● MemOpLight: among containers [Laniel et al. 20]

● MM coordination
● JVM resizing: [Alonso & Appel 90], CRAMM [Yang et al. 06]
● GC coordination: Taurus [Maas et al. 16]

● Uniqueness of M3:
● Cross all memory abstractions in elastic applications
● End-to-end design

33

Concluding Remarks

● Data center applications suffer due to abstractions
● Multiple uncoordinated layers
● Fall back to static settings

● M3 bridges memory abstractions
● Coordinates memory management
● Dynamically adjusts to changes in memory demand

● Open sourced at: https://github.com/dsrg-uoft

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

