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Graph Data is Everywhere
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Machine Learning on Graphs

Graph Machine Learning uses the network structure of the underlying data to improve
predictive outcomes.

Personalization and Recommendation Systems Search, Q&A, semantic web
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Machine Learning on Graphs
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Graph Neural Network maps vertices of graphs to an embedding in a N-dimensional space.



Types of Graph Neural Networks (GNNs)
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Two types of Graph Neural Networks:
e Sampling based GNNs samples the input graph and train using these samples
e Whole Graph based GNNs train on the input graph directly



Workflow of a Sampling based GNNs
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A Sampling based GNN first samples the graph using a Graph Sampling Algorithm and use these samples for data parallel training.



Graph Sampling is an Active Area of Research

DeepWalk and node2vec are random walks
of fixed length starting from a vertex.

FastGCN and LADIES samples vertices for each
layer in their Neural Network.

GraphSAGE samples 2-Hop Neighborhood of a vertex
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ClusterGCN divides a graph into many clusters
and samples one or more of these clusters



ML Domain Experts Implement Graph Sampling on CPU
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GNN implementations use CPU for Graph Sampling and GPU for Neural Network



Graph Sampling is a Major Overhead in GNNs
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Experiments Performed on 32-Core CPU with 1 NVIDIA Tesla V100

[ How can domain experts have best of both worlds: easy to implement and fast Graph Sampling? ]




NextDoor: A System to Accelerate Graph Sampling on GPUs

A simple yet powerful API to express diverse graph sampling algorithms.
A new “Transit Parallel” approach to parallel graph sampling to achieve regularity.
Load balancing and caching to optimize GPU utilization.
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Improves end-to-end training time of GNNs by upto 4x.
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An Abstraction for Graph Sampling Applications

e A graph sampling application runs for k
steps.

® Inthe beginning each sample has one
or more root vertices.

e Ateachstepi @7(5)
o A transit vertex for i is a vertex \ '
RSSG
4 \ Transit Vertices at step 1
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Graph Sampling using NextDoor’s AP

e Simple yet powerful APl based on the abstraction. Vertex next(s, trn, trnEdges) {
int idx = randInt(9,

e Implementations need only few lines of code trnEdges.size()-1)

e We implemented diverse algorithms return trnEdges[idx];
° DeepWalk, PPR, and node2vec }
e  K-hop Neighborhood Sampling
e Importance Sampling int steps() {return 2;}
e  ClusterGCN Sampling int sampleSize(int step)
e  Minimal Variance Sampling {return (step == 8) ? 25:10;}
e  Layer Sampling

GraphSAGE’s k-hop Neighborhood in NextDoor

The API provides information to perform effective load balancing and caching:
v It provides a distinction between a sample and a transit vertex
v Provides the number of steps and number of vertices sampled at each step.

[ How can we implement this APl on a GPU? ]
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A GPU Can Execute Thousands of Threads Simultaneously

High Latency (200 - 800 cycles) Global Memory (2 - 32 GB)
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Low Latency (10 cycles)
Shared Memory (< 48 KB)

Can be utilized as a software managed cache.
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Sample Parallel Graph Sampling on GPUs

Sample Parallel: Assign samples to consecutive threads.

2—:I-I0|:'p Neiighborhood of@, 2 &@

Sample Parallelism suffers from irregularity:

X  Leads to random memory accesses

X Cannot cache in shared memory and
registers

[ Create Map ]

—




¥ NextDoor’s API ¥ Sample Parallel Sampling ¥ Transit Parallel Sampling ¥ NextDoor’s Runtime ¥

F)(Inprimpn’rc

Transit Parallel: Rethinking Parallel Graph Sampling

Transit Parallel: Assign samples with common transits to consecutive threads.
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Transit Parallelism achieves regularity:
v Helps to coalesce memory accesses
v/ Can cache in shared memory and registers
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Load Balanced Transit Parallelism in NextDoor

NextDoor performs load balancing for different transits and cache of neighbors of a transit.
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Implementation

1. NextDoor utilizes efficient parallel radix sort and prefix scan for group by
operation and load balancing.

2. NextDoor isimplemented in C++14 and CUDA 11.

3. NextDoor isavailable at https://plasma-umass.org/nextdoor-eurosys21/.



https://plasma-umass.org/nextdoor-eurosys21/
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Experiments

Benchmarks:

DeepWalk

Personalized Page Rank (PPR)
node2vec

Multi Dimensional Random Walks
K-hop Neighborhood Sampling
ClusterGCN Sampling

FastGCN Sampling

LADIES Sampling

Minimal Variance Sampling (MVS)
Layer Sampling

CPU only Baselines:
e KnightKing

e Samplers in existing GNN Systems
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Experiments

Evaluation System:

Dual Socket 16-Core Intel Xeon Silver CPUs
4x NVIDIA Tesla V100

128 GB of RAM
Ubuntu 18.04
CUDA 11.2
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NextDoor: End-to-End Speedups with GNN Training
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NextDoor’s fast Graph Sampling implementations significantly improves training time of GNNs.
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NextDoor against existing Graph Sampling Implementations

50

S 2500
S
2
o 40 5 2000
¥ E
S 30 Z 1500
; c
E
o] =
a 2 5 1000
3 &
3 3
®» 10 g 500
o
=]
e]
[0}
0 Q 0
DeepWalk PPR node2vec n khop FastGCN LADIES ClusterGCN MVS MultiRW
B PPl B Orkut W Patents [l LJ1 W PPl W Orkut [ Patents [l LJ1
Speedup over KnightKing for Random Walks Speedup over GNN implementations

[ NextDoor achieves orders of magnitude speedup over CPU baselines ]




Summary

® Graph Sampling takes up to 62% of training time in Graph Neural Networks.
e Efficient Graph Sampling on GPUs is hard due to irregular nature of graphs.
e NextDoor: accelerate Graph Sampling using GPUs.

API to easily write efficient graph sampling applications.
Runtime that optimizes memory accesses in GPUs and efficiently balances load.

e NextDoor achieves orders of magnitude improvement over existing solutions.
e NextDoor improves end-to-end training time of GNNs by up to 4 times on large
graphs.
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Existing Implementations Have Limited Parallelism

Input Graph

2-Hop Neighborhood of @, 2),& @

[ Is it possible to increase parallelism in the standard approach to parallel Graph Sampling? ]
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Regular Code achieves High Performance on GPU
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v/ Consecutive Loads X Random Memory Access
v Non-Divergent Control Flow x Divergent Control Flow
v/ Cache in Shared Memory X Ccannot Cache in Shared Memory
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Sample Parallel Graph Sampling is Irregular

¥ NextDoor’s Runtime %
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Scheduling Transit Parallel in NextDoor

The NextDoor API exposes three degrees of parallelism that match the GPU architecture

GPU Sampling Kernel for 2" step of 2-Hop Neighborhood with m, =2

1°t degree: Each transit is
mapped to a threadblock

3" degree: Each thread
r— samples one neighbor

2" degree: Each sample is assigned to a group of m_ threads at step i




¥ NextDoor’s API ¥ Sample Parallel Sampling ¥ Transit Parallel Sampling ¥ NextDoor’s Runtime ¥

prprimpnfc

Additional Overhead of Transit Parallel over Sample Parallel

® Transit Parallel uses a Group By %0

operation.
40

e Random Walks spend up to 40% time in
grouping operation.

e Despite overhead Transit Parallel still
achieves up to 2x speedup over Sample
Parallel in Random Walks.

30

20

® Other Application spend less than 10%
time in grouping operation.

10

% age of time spent in grouping over total time

e Random Walks spends more time - =~ - = - = = =
because they sample only one neighbor & & & &0 & 30«’ & &
of the transit vertex at each step. F & € o
@ PPl B Orkut [ Patents [l LiveJ

Percentage of time spent in group by operation over total time.
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Standard Approach to Parallel Graph Sampling

Sample Parallel Graph Sampling

e Samples can be expanded in parallel by assigning samples to a single thread.
® Approach adopted by existing systems.
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[ Can we use this approach for a GPU based parallel graph sampling? ]
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Leverage GPUs for Graph Sampling is hard!

[ Regular Computations ] [ Irregular Computations ]
a, a, 3 b, b, b ¢, ¢ g
a, a, a b, b, b, | = ¢, ¢ C
a7 aB a9 b7 b8 b9 c7 CB CS
an a2 an b1 bz b3 ansbi1  aizbiz  aisdbis leferent nelghbors of VeI’tICES L\
ax  ax axs +. b2t b2 b = axi+b21 @bz azbaz
an an an ba  ba bams asi+ba1  as»bz  asbas
v Consecutive Memory Accesses x Random Memory Access
v Convergent Control Flow X  Divergent Control Flow

v Utilize faster shared memory X Cannot Utilize faster memory




NextDoor speedup over Transit Parallel

Speedup
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Workflow of Graph Neural Network Training
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An Abstraction for Graph Sampling Applications

e A graph sampling application runs for k steps. step=1 (D= Root vertex ’ 2
Each execution of application produces one \b\'
sample of the graph. 2

e Inthe beginning each sample has root step=2 @)@ - Transit vertex for step 2
vertice(s).

At step /, the application samples m. vertices. P

® Function next describes the sampling X

procedure_ step =3 ”---- Transit vertex for step 3

® A transit vertex at a step i is a vertex whose
neighbors may be sampled at step i.

step =4 ”

A Random Walk of length 4 starting from ’



