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Graph Data is Everywhere

Social Networks

Recommendation Systems

Knowledge Bases

Relational Data

Fraud and Financial Data



Machine Learning on Graphs

Search, Q&A, semantic webPersonalization and Recommendation Systems

combine features from multiple users and products

Graph Machine Learning uses the network structure of the underlying data to improve 
predictive outcomes.

Combine

induction from text

deduction from 
knowledge graph 



Machine Learning on Graphs

2-D Vertex Embeddings

Graph Neural Network

Input Graph

Graph Neural Network maps vertices of graphs to an embedding in a N-dimensional space.

Encoding Phase

Decoding Phase

Vertex 
Embeddings

Decoder

Product
Recommendation

Clustering



Types of Graph Neural Networks (GNNs)

2-D Vertex EmbeddingsInput Graph

Two types of Graph Neural Networks:
● Sampling based GNNs samples the input graph and train using these samples
● Whole Graph based GNNs train on the input graph directly

Graph Neural Network



Workflow of a Sampling based GNNs
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Sample 2-Hop Neighborhood of different vertices Data-Parallel Training

A Sampling based GNN first samples the graph using a Graph Sampling Algorithm and use these samples for data parallel training.
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Graph Sampling is an Active Area of Research

DeepWalk and node2vec are random walks 
of fixed length starting from a vertex.

GraphSAGE samples 2-Hop Neighborhood of a vertex

1-hop

2-hop

ClusterGCN divides a graph into many clusters 
and samples one or more of these clusters

FastGCN and LADIES samples vertices for each 
layer in their Neural Network.

Layer 1

Layer 2

Layer 3



ML Domain Experts Implement Graph Sampling on CPU

GNN implementations use CPU for Graph Sampling and GPU for Neural Network

Graph Samples

Graph Sampling on CPU Neural Network on GPU



Graph Sampling is a Major Overhead in GNNs 

Fraction of time spent in Sampling and Training (per epoch)

Experiments Performed on 32-Core CPU with 1 NVIDIA Tesla V100

How can domain experts have best of both worlds: easy to implement and fast Graph Sampling?



NextDoor: A System to Accelerate Graph Sampling on GPUs

1. A simple yet powerful API to express diverse graph sampling algorithms.

2. A new “Transit Parallel” approach to parallel graph sampling to achieve regularity.

3. Load balancing and caching to optimize GPU utilization.

4. Improves end-to-end training time of GNNs by upto 4x.

Write Graph Sampling 
using NextDoor’s API Load Balancer

Optimized 
GPU Kernels

Vertex next(s, trn, trnEdges)
{return trnEdges[randInt(0, 10)];}
int steps() {return 3;}
int sampleSize(int step) 
{return 1;}

Input Graph
NextDoor’s Runtime

Samples of 
Input Graph



An Abstraction for Graph Sampling Applications

● A graph sampling application runs for k 

steps.

● In the beginning each sample has one 

or more root vertices.

● At each step i

○ A transit vertex for i is a vertex 

whose neighbors may be added 

to the sample

○ Sample m
i 
of those neighbors
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✹    NextDoor’s API       ✹ Sample Parallel Sampling        ✹ Transit Parallel Sampling         ✹  NextDoor’s Runtime     ✹ 
Experiments
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Graph Sampling using NextDoor’s API 

● Simple yet powerful API based on the abstraction.

● Implementations need only few lines of code

● We implemented diverse algorithms
● DeepWalk, PPR, and node2vec
● K-hop Neighborhood Sampling

● Importance Sampling

● ClusterGCN Sampling

● Minimal Variance Sampling

● Layer Sampling

Vertex next(s, trn, trnEdges) {
    int idx = randInt(0, 
              trnEdges.size()-1);
    return trnEdges[idx];
}

int steps() {return 2;}
int sampleSize(int step) 
{return (step == 0) ? 25:10;}

GraphSAGE’s k-hop Neighborhood in NextDoor

The API provides information to perform effective load balancing and caching:
✓ It provides a distinction between a sample and a transit vertex
✓ Provides the number of steps and number of vertices sampled at each step.

How can we implement this API on a GPU?

✹    NextDoor’s API       ✹ Sample Parallel Sampling        ✹ Transit Parallel Sampling         ✹  NextDoor’s Runtime     ✹ 
Experiments



Thread Block Thread Block

GPU Threads

A GPU Can Execute Thousands of Threads Simultaneously
High Latency (200 - 800 cycles) Global Memory (2 - 32 GB)

Low Latency (10 cycles)
Shared Memory (< 48 KB)

Can be utilized as a software managed cache.

Simultaneous 
Multiprocessor(SM)

Simultaneous 
Multiprocessor(SM)

Simultaneous 
Multiprocessor(SM)

✹    NextDoor’s API       ✹ Sample Parallel Sampling        ✹ Transit Parallel Sampling         ✹  NextDoor’s Runtime     ✹ 
Experiments

200 cycles 800 cycles
Random accesses takes more cycles 

than consecutive accesses



GPU Sampling Kernel
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Sample Parallel Graph Sampling on GPUs
Sample Parallel: Assign samples to consecutive threads.
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Sample Parallelism suffers from irregularity:
❌ Leads to random memory accesses
❌ Cannot cache in shared memory and 

registers

Consecutive threads access edges of different transit vertices



Transit Parallel: Rethinking Parallel Graph Sampling
Transit Parallel: Assign samples with common transits to consecutive threads.

Transit Parallelism achieves regularity:
✓ Helps to coalesce memory accesses
✓ Can cache in shared memory and registers
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Load Balanced Transit Parallelism in NextDoor
NextDoor performs load balancing for different transits and cache of neighbors of a transit. 
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Implementation

1. NextDoor utilizes efficient parallel radix sort and prefix scan for group by 
operation and load balancing.

2. NextDoor is implemented in C++14 and CUDA 11.

3. NextDoor is available at https://plasma-umass.org/nextdoor-eurosys21/.

✹    NextDoor’s API       ✹ Sample Parallel Sampling        ✹ Transit Parallel Sampling         ✹  NextDoor’s Runtime     ✹ 
Experiments

https://plasma-umass.org/nextdoor-eurosys21/


Experiments

Benchmarks:

● DeepWalk

● Personalized Page Rank (PPR)
● node2vec

● Multi Dimensional Random Walks

● K-hop Neighborhood Sampling

● ClusterGCN Sampling

● FastGCN Sampling

● LADIES Sampling

● Minimal Variance Sampling (MVS)

● Layer Sampling

CPU only Baselines:

● KnightKing

● Samplers in existing GNN Systems

Graph Name Abrv Nodes Edges

Protein-Protein 
Interactions

PPI 50K 1.4M

com-Orkut Orkut 3M 117M

cit-Patents Patents 3.77M 16.5M

soc-LiveJournal1 LiveJ 4.8M 68.9M

✹    NextDoor’s API       ✹ Sample Parallel Sampling        ✹ Transit Parallel Sampling         ✹  NextDoor’s Runtime     ✹ 
Experiments



Experiments

Evaluation System:

● Dual Socket 16-Core Intel Xeon Silver CPUs

● 4x NVIDIA Tesla V100

● 128 GB of RAM

● Ubuntu 18.04

● CUDA 11.2

✹    NextDoor’s API       ✹ Sample Parallel Sampling        ✹ Transit Parallel Sampling         ✹  NextDoor’s Runtime     ✹ 
Experiments



NextDoor: End-to-End Speedups with GNN Training

NextDoor’s fast Graph Sampling implementations significantly improves training time of GNNs.

✹    NextDoor’s API       ✹ Sample Parallel Sampling        ✹ Transit Parallel Sampling         ✹  NextDoor’s Runtime     ✹ 
Experiments



NextDoor against existing Graph Sampling Implementations

Speedup over KnightKing for Random Walks Speedup over GNN implementations

NextDoor achieves orders of magnitude speedup over CPU baselines 

✹    NextDoor’s API       ✹ Sample Parallel Sampling        ✹ Transit Parallel Sampling         ✹  NextDoor’s Runtime     ✹ 
Experiments



Summary

● Graph Sampling takes up to 62% of training time in Graph Neural Networks.

● Efficient Graph Sampling on GPUs is hard due to irregular nature of graphs.

● NextDoor: accelerate Graph Sampling using GPUs.
✓ API to easily write efficient graph sampling applications.

✓ Runtime that optimizes memory accesses in GPUs and efficiently balances load.

● NextDoor achieves orders of magnitude improvement over existing solutions.

● NextDoor improves end-to-end training time of GNNs by up to 4 times on large 

graphs.



Existing Implementations Have Limited Parallelism
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Is it possible to increase parallelism in the standard approach to parallel Graph Sampling?

One thread of a sample is assigned to expand different vertices of the sample.
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Shared Memory

Regular Computations

Regular Code achieves High Performance on GPU

Regular Computation Thread Block

200 cycles

✓ Consecutive Loads
✓ Non-Divergent Control Flow
✓ Cache in Shared Memory 

Irregular Computations

3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5Global Memory

5 6 7 8

Irregular Computation Thread Block

800 cycles

Different neighbors of vertices

❌ Random Memory Access
❌ Divergent Control Flow
❌ Cannot Cache in Shared Memory

Cannot cache random 
accesses

Wait due to divergent 
control flow

✹    NextDoor’s API       ✹ Sample Parallel Sampling        ✹ Transit Parallel Sampling         ✹  NextDoor’s Runtime     ✹ 
Experiments



GPU Sampling Kernel

Sample Parallel Graph Sampling is Irregular

✹    NextDoor’s API       ✹ Sample Parallel Sampling        ✹ Transit Parallel Sampling         ✹  NextDoor’s Runtime     ✹ 
Experiments
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Sample Parallelism suffers from irregularity:
❌ Leads to random memory accesses
❌ Cannot cache in shared memory and 
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1st degree: Each transit is 
mapped to a threadblock 
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Scheduling Transit Parallel in NextDoor
The NextDoor API exposes three degrees of parallelism that match the GPU architecture
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2nd degree: Each sample is assigned to a group of m
i
 threads at step i

3rd degree: Each thread 
samples one neighbor
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Additional Overhead of Transit Parallel over Sample Parallel

● Random Walks spend up to 40% time in 
grouping operation.

● Despite overhead Transit Parallel still 
achieves up to 2x speedup over Sample 
Parallel in Random Walks.

● Other Application spend less than 10% 
time in grouping operation.

● Random Walks spends more time 
because they sample only one neighbor 
of the transit vertex at each step.

✹    NextDoor’s API       ✹ Sample Parallel Sampling        ✹ Transit Parallel Sampling         ✹  NextDoor’s Runtime     ✹ 
Experiments

● Transit Parallel uses a Group By 
operation. 

Percentage of time spent in group by operation over total time.



Standard Approach to Parallel Graph Sampling

Sample Parallel Graph Sampling
● Samples can be expanded in parallel by assigning samples to a single thread.
● Approach adopted by existing systems.
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Can we use this approach for a GPU based parallel graph sampling?
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Leverage GPUs for Graph Sampling is hard!

Regular Computations Irregular Computations

Different neighbors of vertices

✓ Consecutive Memory Accesses
✓ Convergent Control Flow
✓ Utilize faster shared memory 

❌ Random Memory Access
❌ Divergent Control Flow
❌ Cannot Utilize faster memory



NextDoor speedup over Transit Parallel



Workflow of Graph Neural Network Training
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An Abstraction for Graph Sampling Applications

● A graph sampling application runs for k steps.

● Each execution of application produces one 

sample of the graph.

● In the beginning each sample has root 

vertice(s).

● At step i , the application samples m
i
 vertices.

● Function next describes the sampling 

procedure.

● A transit vertex at a step i is a vertex whose 

neighbors may be sampled at step i.
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A Random Walk of length 4 starting from 1


