Acceleratmg Graph Sampling for Graph
Machine Learning using GPUs

Abhinav Jangda Sandeep Polisetty
University of Massachusetts Amherst University of Massachusetts Amherst
Arjun Guha Marco Serafini

Northeastern University University of Massachusetts Amherst

Graph Data is Everywhere

N G,
Song,,
o> 7] ":'"-“o
\id 3 e

- 1= i
- SungB i ~
= — e Ed Sheeran <sineerQf s @yl c:stic on the Hill
S lee v

S~ Vlrit:en By

Relational Model
0’

Z - > "%
Alice %Q Genre™ ~) Pop "{e‘\ﬁ & }g'\of
2 8% s @]
-
2\ Tony TR 2= Genre

\ J
Song the user has Y Songs the user may
listened to before Knowledge Graph be interested in

Recommendation Systems
Relational Data
New_York_City

NYC
1946 redirects,
' . New_York redirects
‘ . @ The_Trump_Building

BANK
ACCOUNT SYNTHETIC
EREBT UNSECURED RERSON
CARD FORy
SYNTHETIC owner
PERSON 2 -
G Q y Donald_Trump

Social Networks e,
HOLDER 1

PHONE
NUMBER
child

PHONE
SSN2 . NUMBER
g grandFather
ACCOUNT ADDRESS ACCOUNT
Ivanka_Trump .

HOLDER 3

HOLDER 2
. ‘ . e

Knowledge Bases

birthDate NY
partof

redirects

Queens

birthPlace Trump,_Donald

redirects

disambiguates

parent
Trump

disambiguates

CREDIT BANK BANK
CARD. ACCOUNT ACCOUNT

Fraud and Financial Data

Machine Learning on Graphs

Graph Machine Learning uses the network structure of the underlying data to improve
predictive outcomes.

Personalization and Recommendation Systems Search, Q&A, semantic web
o) 9]
Q g induction from text
a8 e
== 2
A 'l/ g Combine
9] v &
9]

deduction from
knowledge graph

combine features from multiple users and products

Machine Learning on Graphs

SR
@)
.0
[Graph Neural Network] —_— ° ®
°°
Encoding Phase hd

Input Graph 2-D Vertex Embeddings

N
Product

Recommendation

J
Vertex
[Embeddings DISIEEL B N

_ Clustering
Decoding Phase)

Graph Neural Network maps vertices of graphs to an embedding in a N-dimensional space.

Types of Graph Neural Networks (GNNs)

%O o
@)
.‘
[Graph Neural Network] - ()
®
0,0
o. ®

Input Graph 2-D Vertex Embeddings

Two types of Graph Neural Networks:
e Sampling based GNNs samples the input graph and train using these samples
e Whole Graph based GNNs train on the input graph directly

Workflow of a Sampling based GNNs

@ (e

(3)
& (3
GQGO

2 Merge samples

o 9 6 Q into mini-batches
@ W

WG @

Input Graph iSampIe 2-Hop Neighborhood of different vertices

__

A Sampling based GNN first samples the graph using a Graph Sampling Algorithm and use these samples for data parallel training.

Graph Sampling is an Active Area of Research

DeepWalk and node2vec are random walks
of fixed length starting from a vertex.

FastGCN and LADIES samples vertices for each
layer in their Neural Network.

GraphSAGE samples 2-Hop Neighborhood of a vertex

- ~

~ ,,

.....

ClusterGCN divides a graph into many clusters
and samples one or more of these clusters

ML Domain Experts Implement Graph Sampling on CPU

JICPUIE ————>
= - Graph Samples
TISITITT
Graph Sampling on CPU Neural Network on GPU

GNN implementations use CPU for Graph Sampling and GPU for Neural Network

Graph Sampling is a Major Overhead in GNNs

80
60
40

20

Fraction of Total Training Time Spent in Sampling

0

GraphSAGE FastGCN LADIES ClusterGCN GraphSAINT MVS

B PPl B Reddit
Fraction of time spent in Sampling and Training (per epoch)

Experiments Performed on 32-Core CPU with 1 NVIDIA Tesla V100

[How can domain experts have best of both worlds: easy to implement and fast Graph Sampling?]

NextDoor: A System to Accelerate Graph Sampling on GPUs

A simple yet powerful API to express diverse graph sampling algorithms.
A new “Transit Parallel” approach to parallel graph sampling to achieve regularity.
Load balancing and caching to optimize GPU utilization.

W N e

Improves end-to-end training time of GNNs by upto 4x.

P e e e e R
& N
/ \

Vertex next(s, |

Write Graph Sampling (v o ey it e | Optimi :
. teps(). ptimized !
) { 15} T
using NextDoor’s API Load Balancer GPU Kernels |
g;)j\o """""""""""""""""""""""""""""""""""" Samples of
NextDoor’s Runtime

Input Graph

Input Graph

¥ NextDoor’s API ¥* E 3 * | ¥*

An Abstraction for Graph Sampling Applications

e A graph sampling application runs for k
steps.

® Inthe beginning each sample has one
or more root vertices.

e Ateachstepi @7(5)
o A transit vertex for i is a vertex \ '
RSSG
4 \ Transit Vertices at step 1

to th I e N S
O the sample _ uniforlrrﬁl?ﬂ'é%mg]rs of@) /
o Sample m.of those neighbors : 4

2-Hop Neighborhood of (2

whose neighbors may be added 2

¥ NextDoor’s API ¥* E 3 * | ¥*

Graph Sampling using NextDoor’s AP

e Simple yet powerful APl based on the abstraction. Vertex next(s, trn, trnEdges) {
int idx = randInt(9,

e Implementations need only few lines of code trnEdges.size()-1)

e We implemented diverse algorithms return trnEdges[idx];
° DeepWalk, PPR, and node2vec }
e K-hop Neighborhood Sampling
e Importance Sampling int steps() {return 2;}
e ClusterGCN Sampling int sampleSize(int step)
e Minimal Variance Sampling {return (step == 8) ? 25:10;}
e Layer Sampling

GraphSAGE’s k-hop Neighborhood in NextDoor

The API provides information to perform effective load balancing and caching:
v It provides a distinction between a sample and a transit vertex
v Provides the number of steps and number of vertices sampled at each step.

[How can we implement this APl on a GPU?]

¥* ¥ Sample Parallel Sampling ¥* ¥* E 3

A GPU Can Execute Thousands of Threads Simultaneously

High Latency (200 - 800 cycles) Global Memory (2 - 32 GB)

1

\ \ \ \ ‘\ \ i ’
N Random accesses takes more cycles ‘ome '
*200 cycles . 800 cycles
RN than consecutive accesses i N
\, | A | A | \ y A y

Low Latency (10 cycles)
Shared Memory (< 48 KB)

Can be utilized as a software managed cache.

Thread Block Thread Block

\ Simultaneous Simultaneous Simultaneous
) Multiprocessor(SM) Multiprocessor(SM) Multiprocessor(SM)

¥ NextDoor’s API ¥ Sample Parallel Sampling

¥ Transit Parallel Sampling ¥ NextDoor’s Runtime ¥

F)(Inprimpn’rc

Sample Parallel Graph Sampling on GPUs

Sample Parallel: Assign samples to consecutive threads.

2—:I-I0|:'p Neiighborhood of@, 2 &@

Sample Parallelism suffers from irregularity:

X Leads to random memory accesses

X Cannot cache in shared memory and
registers

[Create Map]

—

¥ NextDoor’s API ¥ Sample Parallel Sampling ¥ Transit Parallel Sampling ¥ NextDoor’s Runtime ¥

F)(Inprimpn’rc

Transit Parallel: Rethinking Parallel Graph Sampling

Transit Parallel: Assign samples with common transits to consecutive threads.

T Samples

el [

s E—{0@E)

3 fom
3 2 S T GPU Sampling Kernel ...
i 2-I;-Iop Neighb;orh;t)od of@, 2 &@ Edge List in Global Memory

Transit Parallelism achieves regularity:
v Helps to coalesce memory accesses
v/ Can cache in shared memory and registers

..

E 3 E 3 E 3 ¥ NextDoor’s Runtime

¥*

Load Balanced Transit Parallelism in NextDoor

NextDoor performs load balancing for different transits and cache of neighbors of a transit.

) M)
% Samples .
—_ Q
SN0 | &
T © x e
2R o &8 @
- > o ©
O] 3
(U] -
| —
Grid Kernel for @ Thread Block Kernel for @ SubWarp Kernel for @
Shared Memory _ . Shared Memory : Registers

Lithadihian

Transits with > 256 Samples Transits with < 256 and > 32 Samples Transits with < 32 Samples

T T

¥ NextDoor’s API ¥ Sample Parallel Sampling ¥ Transit Parallel Sampling ¥ NextDoor’s Runtime

prnrimpnfc

Implementation

1. NextDoor utilizes efficient parallel radix sort and prefix scan for group by
operation and load balancing.

2. NextDoor isimplemented in C++14 and CUDA 11.

3. NextDoor isavailable at https://plasma-umass.org/nextdoor-eurosys21/.

https://plasma-umass.org/nextdoor-eurosys21/

¥ ¥

¥*

F)(Inprimpnfc

Experiments

Benchmarks:

DeepWalk

Personalized Page Rank (PPR)
node2vec

Multi Dimensional Random Walks
K-hop Neighborhood Sampling
ClusterGCN Sampling

FastGCN Sampling

LADIES Sampling

Minimal Variance Sampling (MVS)
Layer Sampling

CPU only Baselines:
e KnightKing

e Samplers in existing GNN Systems

Graph Name

Protein-Protein
Interactions
com-Orkut

cit-Patents

soc-LivelJournall

Abrv
PPI

Orkut

Patents

Livel

Nodes
50K

3M

3.77M

4.8M

Edges
1.4M

117M
16.5M

68.9M

* *

¥*

F)(Inprimpnfc

Experiments

Evaluation System:

Dual Socket 16-Core Intel Xeon Silver CPUs
4x NVIDIA Tesla V100

128 GB of RAM
Ubuntu 18.04
CUDA 11.2

¥ NextDoor’s API ¥ Sample Parallel Sampling ¥ Transit Parallel Sampling ¥ NextDoor’s Runtime ¥

prprimpnfc

NextDoor: End-to-End Speedups with GNN Training

w N

Speedup of NextDoor Integration over vanilla GNN
N

. imn mm II|I| -lIII _m ll

GraphSAGE FastGCN LADIES ClusterGCN

B PPl B Reddit [Orkut [l Patents [l LiveJ

NextDoor’s fast Graph Sampling implementations significantly improves training time of GNNs.

¥ NextDoor’s API ¥ Sample Parallel Sampling ¥ Transit Parallel Sampling ¥ NextDoors Runtime %

prprimpnfc

NextDoor against existing Graph Sampling Implementations

50

S 2500
S
2
o 40 5 2000
¥ E
S 30 Z 1500
; c
E
o] =
a 2 5 1000
3 &
3 3
®» 10 g 500
o
=]
e]
[0}
0 Q 0
DeepWalk PPR node2vec n khop FastGCN LADIES ClusterGCN MVS MultiRW
B PPl B Orkut W Patents [l LJ1 W PPl W Orkut [Patents [l LJ1
Speedup over KnightKing for Random Walks Speedup over GNN implementations

[NextDoor achieves orders of magnitude speedup over CPU baselines]

Summary

® Graph Sampling takes up to 62% of training time in Graph Neural Networks.
e Efficient Graph Sampling on GPUs is hard due to irregular nature of graphs.
e NextDoor: accelerate Graph Sampling using GPUs.

API to easily write efficient graph sampling applications.
Runtime that optimizes memory accesses in GPUs and efficiently balances load.

e NextDoor achieves orders of magnitude improvement over existing solutions.
e NextDoor improves end-to-end training time of GNNs by up to 4 times on large
graphs.

¥* ¥ Sample Parallel Sampling ¥* ¥* E 3

Existing Implementations Have Limited Parallelism

Input Graph

2-Hop Neighborhood of @, 2),& @

[Is it possible to increase parallelism in the standard approach to parallel Graph Sampling?]

¥* ¥ Sample Parallel Sampling ¥* ¥* E 3

Regular Code achieves High Performance on GPU

Global Memory |3|4|5|6|7(8|9|1|2|3|4|5|6|7|/8|/9|1|2/3/4|5|6/7|8|/9|1|2[3|4]|5
P NV S s P
[RegularComputations] \‘2\00\cyples‘ Lo ‘\\\\800cycles "//’j’/lflrreigul:arCor:nputailtionsJ
o T T 5 ¢ | Cannotcacherandom [TS % Z 271 = o | |
{; ; ” b: H ;] g% 1 acdesses SR EPY
Shared Memory 2718 | wait due to divergent .20 |
o control flow &.'I ; s Lo
% % § § Lo g % § Different neighbors of vertices
Regular Computation Thread Block Irregular Computation Thread Block
v/ Consecutive Loads X Random Memory Access
v Non-Divergent Control Flow x Divergent Control Flow
v/ Cache in Shared Memory X Ccannot Cache in Shared Memory

¥ NextDoor’s API ¥ Sample Parallel Sampling ¥ Transit Parallel Sampling

F)(Inprimpn’rc

Sample Parallel Graph Sampling is Irregular

¥ NextDoor’s Runtime %

Transits

5
oo |

GPU Sampling Kernel

[Create Map]

§2-||-|or§ Neiighborhood of@, 2 &@ T AT AN TTTTTTTAN

? f o) (3) ! (3)"
R <8 oy <
Sample Parallelism suffers from irregularity: - a a

S —g g - - ~S e e T S —g———— ==

x Leads to random memory accesses . . ./'¢. %E@/
- ¢ o '

Cannot cache in shared memory and

e 3378853 35 5.3 3.5

*—

¥* ¥* ¥ NextDoor’s Runtime %

Scheduling Transit Parallel in NextDoor

The NextDoor API exposes three degrees of parallelism that match the GPU architecture

GPU Sampling Kernel for 2" step of 2-Hop Neighborhood with m, =2

1°t degree: Each transit is
mapped to a threadblock

3" degree: Each thread
r— samples one neighbor

2" degree: Each sample is assigned to a group of m_ threads at step i

¥ NextDoor’s API ¥ Sample Parallel Sampling ¥ Transit Parallel Sampling ¥ NextDoor’s Runtime ¥

prprimpnfc

Additional Overhead of Transit Parallel over Sample Parallel

® Transit Parallel uses a Group By %0

operation.
40

e Random Walks spend up to 40% time in
grouping operation.

e Despite overhead Transit Parallel still
achieves up to 2x speedup over Sample
Parallel in Random Walks.

30

20

® Other Application spend less than 10%
time in grouping operation.

10

% age of time spent in grouping over total time

e Random Walks spends more time - =~ - = - = = =
because they sample only one neighbor & & & &0 & 30«’ & &
of the transit vertex at each step. F & € o
@ PPl B Orkut [Patents [l LiveJ

Percentage of time spent in group by operation over total time.

* ¥ Sample Parallel Sampling ¥*

Standard Approach to Parallel Graph Sampling

Sample Parallel Graph Sampling

e Samples can be expanded in parallel by assigning samples to a single thread.
® Approach adopted by existing systems.

1\
1

2-Hop Neighborhood

2 4 6 II \\ Il \‘\ :Il ‘\\ III \‘\
Y N
OO @ OO @G

Input Graph

[Can we use this approach for a GPU based parallel graph sampling?]

LY

A T

Y [}

T 1o

' \ 1 \
C:IXSD V @

2-Hop Neighborhood of @, 2),& @

Leverage GPUs for Graph Sampling is hard!

[Regular Computations] [Irregular Computations]
a, a, 3 b, b, b ¢, ¢ g
a, a, a b, b, b, | = ¢, ¢ C
a7 aB a9 b7 b8 b9 c7 CB CS
an a2 an b1 bz b3 ansbi1 aizbiz aisdbis leferent nelghbors of VeI’tICES L\
ax ax axs +. b2t b2 b = axi+b21 @bz azbaz
an an an ba ba bams asi+ba1 as»bz asbas
v Consecutive Memory Accesses x Random Memory Access
v Convergent Control Flow X Divergent Control Flow

v Utilize faster shared memory X Cannot Utilize faster memory

NextDoor speedup over Transit Parallel

Speedup

B PPl B Orkut [Patents [l LJ1

Workflow of Graph Neural Network Training

e
29

Random Walk
starting at ’ 2 —»[Neural Network

1

Random Walk
Input Graph / starting at @)
® ¢
Random Walk
starting at @)

Each Random Walk is a mini-batch

An Abstraction for Graph Sampling Applications

e A graph sampling application runs for k steps. step=1 (D= Root vertex ’ 2
Each execution of application produces one \b\'
sample of the graph. 2

e Inthe beginning each sample has root step=2 @)@ - Transit vertex for step 2
vertice(s).

At step /, the application samples m. vertices. P

® Function next describes the sampling X

procedure_ step =3 ”---- Transit vertex for step 3

® A transit vertex at a step i is a vertex whose
neighbors may be sampled at step i.

step =4 ”

A Random Walk of length 4 starting from ’

