
Accelerating Graph Sampling for Graph
Machine Learning using GPUs

Abhinav Jangda
University of Massachusetts Amherst

Sandeep Polisetty
University of Massachusetts Amherst

Marco Serafini
University of Massachusetts Amherst

Arjun Guha
Northeastern University

Graph Data is Everywhere

Social Networks

Recommendation Systems

Knowledge Bases

Relational Data

Fraud and Financial Data

Machine Learning on Graphs

Search, Q&A, semantic webPersonalization and Recommendation Systems

combine features from multiple users and products

Graph Machine Learning uses the network structure of the underlying data to improve
predictive outcomes.

Combine

induction from text

deduction from
knowledge graph

Machine Learning on Graphs

2-D Vertex Embeddings

Graph Neural Network

Input Graph

Graph Neural Network maps vertices of graphs to an embedding in a N-dimensional space.

Encoding Phase

Decoding Phase

Vertex
Embeddings

Decoder

Product
Recommendation

Clustering

Types of Graph Neural Networks (GNNs)

2-D Vertex EmbeddingsInput Graph

Two types of Graph Neural Networks:
● Sampling based GNNs samples the input graph and train using these samples
● Whole Graph based GNNs train on the input graph directly

Graph Neural Network

Workflow of a Sampling based GNNs

1

2

3

4

5

6

Input Graph

p
1

p
2

p
3

p
4

p
5

p
6

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
10

p
1

p
2

p
3

p
4

p
5

p
6

y

Sample 2-Hop Neighborhood of different vertices Data-Parallel Training

A Sampling based GNN first samples the graph using a Graph Sampling Algorithm and use these samples for data parallel training.

1

4

1

6

5 4 3

2

4

1

1

5 4 6

3

4

1

1

5 6 4
Merge samples
into mini-batches

Graph Sampling is an Active Area of Research

DeepWalk and node2vec are random walks
of fixed length starting from a vertex.

GraphSAGE samples 2-Hop Neighborhood of a vertex

1-hop

2-hop

ClusterGCN divides a graph into many clusters
and samples one or more of these clusters

FastGCN and LADIES samples vertices for each
layer in their Neural Network.

Layer 1

Layer 2

Layer 3

ML Domain Experts Implement Graph Sampling on CPU

GNN implementations use CPU for Graph Sampling and GPU for Neural Network

Graph Samples

Graph Sampling on CPU Neural Network on GPU

Graph Sampling is a Major Overhead in GNNs

Fraction of time spent in Sampling and Training (per epoch)

Experiments Performed on 32-Core CPU with 1 NVIDIA Tesla V100

How can domain experts have best of both worlds: easy to implement and fast Graph Sampling?

NextDoor: A System to Accelerate Graph Sampling on GPUs

1. A simple yet powerful API to express diverse graph sampling algorithms.

2. A new “Transit Parallel” approach to parallel graph sampling to achieve regularity.

3. Load balancing and caching to optimize GPU utilization.

4. Improves end-to-end training time of GNNs by upto 4x.

Write Graph Sampling
using NextDoor’s API Load Balancer

Optimized
GPU Kernels

Vertex next(s, trn, trnEdges)
{return trnEdges[randInt(0, 10)];}
int steps() {return 3;}
int sampleSize(int step)
{return 1;}

Input Graph
NextDoor’s Runtime

Samples of
Input Graph

An Abstraction for Graph Sampling Applications

● A graph sampling application runs for k

steps.

● In the beginning each sample has one

or more root vertices.

● At each step i

○ A transit vertex for i is a vertex

whose neighbors may be added

to the sample

○ Sample m
i
of those neighbors

2

?

?

step = 0

step = 1

2-Hop Neighborhood of 2

?

? ? ?

4 1

1 5 64

Transit Vertices at step 1

m
0
 = 2

m
1
 = 2

Transit Vertex at step 0

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

1

2

3

4

5

6

uniform(Neighbors of)

1

2

3

4

5

6

2uniform(Neighbors of)

1

2

3

4

5

6

1uniform(Neighbors of)

1

2

3

4

5

6

4
Input Graph

Graph Sampling using NextDoor’s API

● Simple yet powerful API based on the abstraction.

● Implementations need only few lines of code

● We implemented diverse algorithms
● DeepWalk, PPR, and node2vec
● K-hop Neighborhood Sampling

● Importance Sampling

● ClusterGCN Sampling

● Minimal Variance Sampling

● Layer Sampling

Vertex next(s, trn, trnEdges) {
 int idx = randInt(0,
 trnEdges.size()-1);
 return trnEdges[idx];
}

int steps() {return 2;}
int sampleSize(int step)
{return (step == 0) ? 25:10;}

GraphSAGE’s k-hop Neighborhood in NextDoor

The API provides information to perform effective load balancing and caching:
✓ It provides a distinction between a sample and a transit vertex
✓ Provides the number of steps and number of vertices sampled at each step.

How can we implement this API on a GPU?

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

Thread Block Thread Block

GPU Threads

A GPU Can Execute Thousands of Threads Simultaneously
High Latency (200 - 800 cycles) Global Memory (2 - 32 GB)

Low Latency (10 cycles)
Shared Memory (< 48 KB)

Can be utilized as a software managed cache.

Simultaneous
Multiprocessor(SM)

Simultaneous
Multiprocessor(SM)

Simultaneous
Multiprocessor(SM)

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

200 cycles 800 cycles
Random accesses takes more cycles

than consecutive accesses

GPU Sampling Kernel

5 6
4

1

Edge List in Global Memory

1
4

6
4

3

Sample Parallel Graph Sampling on GPUs
Sample Parallel: Assign samples to consecutive threads.

Sa
m

p
le

s

Transits

4

4

6

1

4 1

S
1

S
2

S
3

C
re

at
e

M
apSamples

Transits

S
1

S
2

S
3

S
1

4 4 6 6

S
1

S
1

S
1

4 4 1 1

S
2

S
2

S
2

S
2

4 4 1 1

S
3

S
3

S
3

S
3

2

4 1

3

4 1

1

4 6step 1

? ? ? ? ? ? ? ?? ? ? ?

2-Hop Neighborhood of , &21 3

1 5 34 1 5 64 1 5 64

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

Sample Parallelism suffers from irregularity:
❌ Leads to random memory accesses
❌ Cannot cache in shared memory and

registers

Consecutive threads access edges of different transit vertices

Transit Parallel: Rethinking Parallel Graph Sampling
Transit Parallel: Assign samples with common transits to consecutive threads.

Transit Parallelism achieves regularity:
✓ Helps to coalesce memory accesses
✓ Can cache in shared memory and registers

G
ro

u
p

 S
am

p
le

s
b

y
Tr

an
si

t S
1

S
1

S
2

S
2

S
3

S
3

4

1

6Tr
an

si
ts

Samples

GPU Sampling Kernel

4 4 444 4

S
1

S
1

S
2

S
2

S
3

S
3

6 6

S
1

S
1

S
3S

3

1 1 1 1

S
2

S
2

Consecutive threads access edges of same transit vertices

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

Samples

Transits

S
1

S
2

S
3

2

4 1

3

4 1

1

4 6step 1

? ? ? ? ? ? ? ?? ? ? ?

2-Hop Neighborhood of , &21 3

1 5 34 1 5 64 1 5 64

5 6
4

1

Edge List in Global Memory

1
4

6
4

3

Load Balanced Transit Parallelism in NextDoor
NextDoor performs load balancing for different transits and cache of neighbors of a transit.

1

1
6

4

S
3

S
3 S

2
S

2

Shared Memory

Thread Block Kernel for

 Transits with < 256 and > 32 Samples

Lo
ad

 B
al

an
ce

r

6

6
4

3

S
1S

1

Registers

SubWarp Kernel for

 Transits with < 32 SamplesTransits with > 256 Samples

4
5

1

S
1

S
1

S
2

S
2

S
3

S
3

Shared Memory

Grid Kernel for 4

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

G
ro

u
p

 S
am

p
le

s
b

y
Tr

an
si

t S
1

S
1

S
2

S
2

S
3

S
3

4

1

6Tr
an

si
ts

Samples

Implementation

1. NextDoor utilizes efficient parallel radix sort and prefix scan for group by
operation and load balancing.

2. NextDoor is implemented in C++14 and CUDA 11.

3. NextDoor is available at https://plasma-umass.org/nextdoor-eurosys21/.

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

https://plasma-umass.org/nextdoor-eurosys21/

Experiments

Benchmarks:

● DeepWalk

● Personalized Page Rank (PPR)
● node2vec

● Multi Dimensional Random Walks

● K-hop Neighborhood Sampling

● ClusterGCN Sampling

● FastGCN Sampling

● LADIES Sampling

● Minimal Variance Sampling (MVS)

● Layer Sampling

CPU only Baselines:

● KnightKing

● Samplers in existing GNN Systems

Graph Name Abrv Nodes Edges

Protein-Protein
Interactions

PPI 50K 1.4M

com-Orkut Orkut 3M 117M

cit-Patents Patents 3.77M 16.5M

soc-LiveJournal1 LiveJ 4.8M 68.9M

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

Experiments

Evaluation System:

● Dual Socket 16-Core Intel Xeon Silver CPUs

● 4x NVIDIA Tesla V100

● 128 GB of RAM

● Ubuntu 18.04

● CUDA 11.2

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

NextDoor: End-to-End Speedups with GNN Training

NextDoor’s fast Graph Sampling implementations significantly improves training time of GNNs.

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

NextDoor against existing Graph Sampling Implementations

Speedup over KnightKing for Random Walks Speedup over GNN implementations

NextDoor achieves orders of magnitude speedup over CPU baselines

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

Summary

● Graph Sampling takes up to 62% of training time in Graph Neural Networks.

● Efficient Graph Sampling on GPUs is hard due to irregular nature of graphs.

● NextDoor: accelerate Graph Sampling using GPUs.
✓ API to easily write efficient graph sampling applications.

✓ Runtime that optimizes memory accesses in GPUs and efficiently balances load.

● NextDoor achieves orders of magnitude improvement over existing solutions.

● NextDoor improves end-to-end training time of GNNs by up to 4 times on large

graphs.

Existing Implementations Have Limited Parallelism

4 1 4 1 4 6

1 5 4 6 1 5 6 4 1 5 4 3

t
1

t
2

t
3

Is it possible to increase parallelism in the standard approach to parallel Graph Sampling?

One thread of a sample is assigned to expand different vertices of the sample.

2 3 1

2-Hop Neighborhood of , , &1 2 3

Input Graph

2-Hop Neighborhood

1

2

3

4

5

6

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

Shared Memory

Regular Computations

Regular Code achieves High Performance on GPU

Regular Computation Thread Block

200 cycles

✓ Consecutive Loads
✓ Non-Divergent Control Flow
✓ Cache in Shared Memory

Irregular Computations

3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5Global Memory

5 6 7 8

Irregular Computation Thread Block

800 cycles

Different neighbors of vertices

❌ Random Memory Access
❌ Divergent Control Flow
❌ Cannot Cache in Shared Memory

Cannot cache random
accesses

Wait due to divergent
control flow

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

GPU Sampling Kernel

Sample Parallel Graph Sampling is Irregular

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

5 6
4

1

Edge List in Global Memory

1
4

6
4

3

Sa
m

p
le

s

Transits

4

4

6

1

4 1

S
1

S
2

S
3

C
re

at
e

M
apSamples

Transits

S
1

S
2

S
3

S
1

4 4 6 6

S
1

S
1

S
1

4 4 1 1

S
2

S
2

S
2

S
2

4 4 1 1

S
3

S
3

S
3

S
3

2

4 1

3

4 1

1

4 6step 1

? ? ? ? ? ? ? ?? ? ? ?

2-Hop Neighborhood of , &21 3

1 5 34 1 5 64 1 5 64

Consecutive threads access edges of different transit vertices

Sample Parallelism suffers from irregularity:
❌ Leads to random memory accesses
❌ Cannot cache in shared memory and

registers

1st degree: Each transit is
mapped to a threadblock

6 6

S
1

S
1

Scheduling Transit Parallel in NextDoor
The NextDoor API exposes three degrees of parallelism that match the GPU architecture

4 4 444 4

S
1

S
1

S
2

S
2

S
3

S
3 S

3S
3

1 1 1 1

S
2

S
2

GPU Sampling Kernel for 2nd step of 2-Hop Neighborhood with m
1
 = 2

2nd degree: Each sample is assigned to a group of m
i
 threads at step i

3rd degree: Each thread
samples one neighbor

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

5 6
4

1

Edge List in Global Memory

1
4

6
4

3

Additional Overhead of Transit Parallel over Sample Parallel

● Random Walks spend up to 40% time in
grouping operation.

● Despite overhead Transit Parallel still
achieves up to 2x speedup over Sample
Parallel in Random Walks.

● Other Application spend less than 10%
time in grouping operation.

● Random Walks spends more time
because they sample only one neighbor
of the transit vertex at each step.

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

● Transit Parallel uses a Group By
operation.

Percentage of time spent in group by operation over total time.

Standard Approach to Parallel Graph Sampling

Sample Parallel Graph Sampling
● Samples can be expanded in parallel by assigning samples to a single thread.
● Approach adopted by existing systems.

1 5 4 6 1 5 6 4 1 5 4 3

t
1

t
2

t
3

Can we use this approach for a GPU based parallel graph sampling?

Input Graph

2-Hop Neighborhood

1

2

3

4

5

6

4 1 4 1 4 6

2 3 1

2-Hop Neighborhood of , , &1 2 3

✹ NextDoor’s API ✹ Sample Parallel Sampling ✹ Transit Parallel Sampling ✹ NextDoor’s Runtime ✹
Experiments

Leverage GPUs for Graph Sampling is hard!

Regular Computations Irregular Computations

Different neighbors of vertices

✓ Consecutive Memory Accesses
✓ Convergent Control Flow
✓ Utilize faster shared memory

❌ Random Memory Access
❌ Divergent Control Flow
❌ Cannot Utilize faster memory

NextDoor speedup over Transit Parallel

Workflow of Graph Neural Network Training

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Random Walk
starting at 1

Random Walk
starting at 2

Random Walk
starting at 3

Neural Network

Input Graph

Each Random Walk is a mini-batch

An Abstraction for Graph Sampling Applications

● A graph sampling application runs for k steps.

● Each execution of application produces one

sample of the graph.

● In the beginning each sample has root

vertice(s).

● At step i , the application samples m
i
 vertices.

● Function next describes the sampling

procedure.

● A transit vertex at a step i is a vertex whose

neighbors may be sampled at step i.

1

?

?

?

step = 1

step = 2

step = 3

step = 4

Root vertex 1

2

3

4

5

6

4
1

2

3

4

5

6

5

1

2

3

4

5

66

Transit vertex for step 2

Transit vertex for step 3

A Random Walk of length 4 starting from 1

