Finding Heterogeneous-Unsafe
Configuration Parameters in Cloud Systems

Sixiang Ma, Fang Zhou, Michael D. Bond, Yang Wang
The Ohio State University

EuroSys 2021

THE OHIO STATE
UNIVERSITY

Department of

Computer Science and Engineering

Heterogeneous Configurations Are Prevalent

* Heterogeneous hardware calls for
heterogeneous configuration

SAMSUNG
Solid State Drive

* Online reconfiguration, e.g., reconfig

command, rolling restart ,
. HERSE A CErbED
* Consequence: short window of | A YRR
heterogeneous configuration i@'hadaa 5.
I&PAEIE l: kCI® il lﬁ Zooreeper

Heterogeneous Configuration Can Cause Error

* Errors can happen even if each node has F1
valid configuration locally. encrypt

HomoConf(F1) is valid HomoConf(F2) is valid HeterConf(F1,F2) is invalid

Heterogeneous Configuration Can Cause Error

/
e Error{ We call HeterConf(F1, F2) Invalid Heterogenous
valid { Configuration, if it causes errors but encrypt

HomoConf(F1) and HomoConf(F2) do not.

HomoConf(F1) is valid HomoConf(F2) is valid HeterConf(F1,F2) is invalid

Heterogeneous Configuration Can Cause Error

-~

e Errory We call HeterConf(F1, F2) Invalid Heterogenous
valid (Configuration, if it causes errors but encrypt
HomoConf(F1) and HomoConf(F2) do not.

/
@‘0‘ We call the corresponding parameter
\ Heterogenous-Unsafe Configuration

N
(F1) (r1)| Parameter.
\ /
HomoConf(F1) is \ﬁlo Hcmmm—ﬁmtmf(m,m) is invalid

Example: dfs.datanode.balance.bandwidthPerSec

e Specify the maximum amount of bandwidth that a HDFS DataNode can use
for balancing purpose.

Example: dfs.datanode.balance.bandwidthPerSec

e Specify the maximum amount of bandwidth that a HDFS DataNode can use
for balancing purpose.

100 MB/s 100 MB/s

transfer data
DataNode 1 > DataNode 2
freport progress

3

Example: dfs.datanode.balance.bandwidthPerSec

e Specify the maximum amount of bandwidth that a HDFS DataNode can use
for balancing purpose.

10 MB/s 10 MB/s

transfer data
DataNode 1 > DataNode 2
freport progress

3

Example: dfs.datanode.balance.bandwidthPerSec

e Specify the maximum amount of bandwidth that a HDFS DataNode can use
for balancing purpose.

100 MB/s 10 MB/s

transfer data
DataNode 1 DataNode 2

}Q{]

Related Work

This type of errors is different from the problem of

erroneous configuration values [Encore-ASPLOS 14, ConfValley-
EuroSys’15, PCheck-OSDI’16, PracExtractor-ATC’20]

 Parameter values are valid.

* Errors happen when nodes communicate.

Overview

* Qur goal: find heterogeneous-unsafe configuration
parameters in cloud systems.

e ZebraConf: a testing framework that reuse existing unit tests%

* It finds 41 true problems in HDFS, YARN, MR, HBase, Flink.

ZebraConf Uses Classic Software Testing Approach

* Challenge: some parameters may only take effect under specific
workloads.

* Observation: mature cloud systems usually have rich unit tests.
* High code coverage [Kairux-SOSP’19]
* E.g.,90.1% statement coverage in HDFS
* Many unit tests are using configuration

e 3,628 unit tests in HDFS use config, covering 96.2% parameters

ZebraConf Uses Classic Software Testing Approach

* Challenge: some parameters may only take effect under specific
workloads.

Reuse Existing Unit Tests for Our Purpose

* E.g.,90.1% statement coverage in HDFS
* Many unit tests are using configuration

e 3,628 unit tests in HDFS use config, covering 96.2% parameters

ZebraConf: Major Challenges

ZebraConf: Major Challenges

* C1: How to reduce testing time?
* Apps can have 1000s of tests, 100s-1000s of parameters.

e A test runs for several seconds to several minutes.

ZebraConf: Major Challenges

* C1: How to reduce testing time?
* Apps can have 1000s of tests, 100s-1000s of parameters.

e A test runs for several seconds to several minutes.

* C2: How to assigh heterogeneous configuration in unit tests?

* We can specify the config when starting a node as process.
* E.g., hadoop-daemon.sh --config [CONFIG_PATH] start

* However, this approach doesn’t work in unit tests.

ZebraConf Overview

Parameters

i
[TestGen]

<testl, heter confl>
<testl, heter conf2>

[TestRunner]

N

/Coangent\ /Coangent\ /Coangent\

TestGen: generate test instances

TestRunner: conduct a test

ConfAgent: assign configs to nodes

ZebraConf Overview

Parameters

J
[TestGen J

|_| ~tact1l hator confls

[TestRunnerJ TestRunner: conduct a test

e I N .

(ocniN (oen N (0 of
C2: How to assign heter config in unittests [~ ="""""""""""73

F (F1) r E ConfAgent: assign configs to nodes .
SR e

Cl:How to reduce testing time

ZebraConf Overview

Parameters ! .
| . TestGen: generate test instances
[TestGen J i - Selective value assignment

- Pre-run profiling

|_| ~tact1l hator confls

LTestRunnerJ " TestRunner: conduct a test
. - Supporting pooled testing

/\\ - Concurrent testing
/., . -Hypothesistesting
C2: How to assign heter config in unittests [~ ="""""""""""73

F (F1) T i ConfAgent: assign configs to nodes
R et

C1:How to reduce testing time [Pooled tests

ZebraConf Overview

Parameters ! .
| . TestGen: generate test instances
[TestGen J i - Selective value assignment

- Pre-run profiling

|_| <tactl hotaor caoanfls

[TestRunnerJ " TestRunner: conduct a test
' - Supporting pooled testing

/\\ - Concurrent testing
N/, - Hypothesistesting
C2: How to assign heter config in unittests [~ ="""""""""""73

L W Li ConfAgent: assign configs to nodes i
(N st ikatiah e

C1:How to reduce testing time [Pooled tests

ConfAgent: Challenges

In distributed setting, we can specify the
config file when starting a node as process.

Config
Object

O 0N/ O
O
Sl /ANEe

nodel node?2

O

ConfAgent: Challenges

In distributed setting, we can specify the
config file when starting a node as process.

F1

Config
Object

ConfAgent: Challenges

In distributed setting, we can specify the
config file when starting a node as process.

F1 F2

Config
Object

nodel node?2

ConfAgent: Challenges

In distributed setting, we can specify the

config file when starting a node as process.

F1 F2

Config
Object

node?2

nodel

This doesn’t work in unit tests, as nodes are
often created as threads in a single process
(i.e., minicluster testing)

ole
00 ©
O O

ConfAgent: Challenges

E work in unit tests, as nodes are
rd as threads in a single process
Ister testing)

Key idea: attribute config objects to nodes &
hack return values

ConfAgent: Challenges

Key idea: attribute config objects to nodes & pwork in UNIE tests, as nodes are
rd as threads in a single process

hack return values Ister testing)

Challenges:

=
- -
- ‘\

* Each node can have multiple config objects.

* Config objects can be shared among nodes.

* Valuesin one config object seen by multiple
nodes.

A node may read inconsistent
values, causing false positives.

ConfAgent’s Solution

* Clone config objects that can be shared.

ConfAgent’s Solution

* Clone config objects that can be shared.

ConfAgent’s Solution

* Clone config objects that can be shared.

* Track config creation flow and attribute
config objects to nodes by rules.

* E.g., Conf b = new Conf(a) & a belongs to nodel
- b belongs to nodel

ConfAgent’s Solution

Uncertain config
objects

* Clone config objects that can be shared.

——
- ~~

* Track config creation flow and attribute
config objects to nodes by rules.

e E.g., Conf b = new Conf(a) & a belongs to nodel
- b belongs to nodel

* Track uncertain config objects.

* Avoid testing parameters read from them.

ConfAgent’s Solution

Uncertain config
objects

* Clone config objects that can be shared.

-——
- -

* Track config creation flow and attribute
config objects to nodes by rules.

e E.g., Conf b = new Conf(a) & a belongs to nodel
- b belongs to nodel

* Track uncertain config objects.
* Avoid testing parameters read from them.

 Manipulate config parameter values.

Evaluation

* Hardware setting

* We run all the experiments on CloudLab

* Intel Xeon 10-core CPUs, 192 GB DRAM, 480 GB SATA SSD
* Applications

* Five app: HDFS, YARN, MR, HBase, Flink

* Modification overhead: 18 to 38 LOC

* Totally 4,652 machine hours with up to 100 physical machines,
each running 20 Docker containers

Evaluation

e ZebraConf reports 57 heterogeneous-unsafe parameters.

* Our manual analysis finds 41 are true problems.

* Categories of these parameters:
* Data transfer format related
* Max limit related
* Timeout related
* Task numbers related

* Unexpected ones

dfs.datanode.balance.max.concurrent.moves

* Limits the max number of threads that a DataNode can use for balancing.
{DataNode 1] { DataNode N }
59993 99995

[Balancer }

dfs.datanode.balance.max.concurrent.moves

* Limits the max number of threads that a DataNode can use for balancing.

moves=Svalue moves=Svalue

ot o [
amoves=$value

[Balancer }

dfs.datanode.balance.max.concurrent.moves

* Limits the max number of threads that a DataNode can use for balancing.

moves=Svalue moves=Svalue

i Balancing
s e
sSSSS Sssss Balancer: 50, DN: 50 14s
Balancer: 1, DN: 1 16.7s

amoves=$va|ue

[Balancer }

dfs.datanode.balance.max.concurrent.moves

* Limits the max number of threads that a DataNode can use for balancing.

moves=1 moves=1

i Balancing
s e
sssss sssss Balancer: 50, DN: 50 14s
Balancer: 1, DN: 1 16.7s

moves=50
a Balancer: 50, DN: 1 154s
[Balancer } 10x slower than just
using 1 thread

dfs.datanode.balance.max.concurrent.moves

* Limits the max number of threads that a DataNode can use for balancing.

dmoves=1 .
HDFS-7466: Allow different values for Balancing
{DataNode< moves per DataNode
$SS SI- 0 14s
“The correct approach will be to obtain 16.75
{ the value from the DataNode itself” 1545
L Balancer J 10x slower than just
using 1 thread

Conclusion

e ZebraConf reuses existing unit tests to find unsafe parameters.
* We find 41 heterogeneous-unsafe parameters with ZebraConf.
* Need better support for heterogeneous configurations.

* We made ZebraConf publicly available:
https://github.com/StarThinking/ZebraConf/

39

https://github.com/StarThinking/ZebraConf/

