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Heterogeneous Configurations Are Prevalent

* Heterogeneous hardware calls for
heterogeneous configuration
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Heterogeneous Configuration Can Cause Error

* Errors can happen even if each node has F1
valid configuration locally. encrypt

HomoConf(F1) is valid HomoConf(F2) is valid HeterConf(F1,F2) is invalid
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e Errory We call HeterConf(F1, F2) Invalid Heterogenous
valid ( Configuration, if it causes errors but encrypt
HomoConf(F1) and HomoConf(F2) do not.
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Example: dfs.datanode.balance.bandwidthPerSec

e Specify the maximum amount of bandwidth that a HDFS DataNode can use
for balancing purpose.
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Example: dfs.datanode.balance.bandwidthPerSec

e Specify the maximum amount of bandwidth that a HDFS DataNode can use
for balancing purpose.

100 MB/s 10 MB/s

transfer data
DataNode 1 DataNode 2
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Related Work

This type of errors is different from the problem of

erroneous configuration values [Encore-ASPLOS 14, ConfValley-
EuroSys’15, PCheck-OSDI’16, PracExtractor-ATC’20]

 Parameter values are valid.

* Errors happen when nodes communicate.



Overview

* Qur goal: find heterogeneous-unsafe configuration
parameters in cloud systems.

e ZebraConf: a testing framework that reuse existing unit tests%

* It finds 41 true problems in HDFS, YARN, MR, HBase, Flink.



ZebraConf Uses Classic Software Testing Approach

* Challenge: some parameters may only take effect under specific
workloads.

* Observation: mature cloud systems usually have rich unit tests.
* High code coverage [Kairux-SOSP’19]
* E.g.,90.1% statement coverage in HDFS
* Many unit tests are using configuration

e 3,628 unit tests in HDFS use config, covering 96.2% parameters



ZebraConf Uses Classic Software Testing Approach

* Challenge: some parameters may only take effect under specific
workloads.

Reuse Existing Unit Tests for Our Purpose

* E.g.,90.1% statement coverage in HDFS
* Many unit tests are using configuration

e 3,628 unit tests in HDFS use config, covering 96.2% parameters
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ZebraConf: Major Challenges

* C1: How to reduce testing time?
* Apps can have 1000s of tests, 100s-1000s of parameters.

e A test runs for several seconds to several minutes.

* C2: How to assigh heterogeneous configuration in unit tests?

* We can specify the config when starting a node as process.
* E.g., hadoop-daemon.sh --config [CONFIG_PATH] start

* However, this approach doesn’t work in unit tests.



ZebraConf Overview

Parameters
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TestGen: generate test instances

TestRunner: conduct a test

ConfAgent: assign configs to nodes
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ConfAgent: Challenges

In distributed setting, we can specify the
config file when starting a node as process.
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ConfAgent: Challenges

In distributed setting, we can specify the

config file when starting a node as process.

F1 F2

Config
Object

node?2

nodel

This doesn’t work in unit tests, as nodes are
often created as threads in a single process
(i.e., minicluster testing)
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Key idea: attribute config objects to nodes & pwork in UNIE tests, as nodes are
rd as threads in a single process

hack return values Ister testing)

Challenges:

=
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* Each node can have multiple config objects.

* Config objects can be shared among nodes.

* Valuesin one config object seen by multiple
nodes.

A node may read inconsistent
values, causing false positives.



ConfAgent’s Solution

* Clone config objects that can be shared.
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ConfAgent’s Solution

Uncertain config
objects

* Clone config objects that can be shared.

-——
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* Track config creation flow and attribute
config objects to nodes by rules.

e E.g., Conf b = new Conf(a) & a belongs to nodel
- b belongs to nodel

* Track uncertain config objects.
* Avoid testing parameters read from them.

 Manipulate config parameter values.



Evaluation

* Hardware setting

* We run all the experiments on CloudLab

* Intel Xeon 10-core CPUs, 192 GB DRAM, 480 GB SATA SSD
* Applications

* Five app: HDFS, YARN, MR, HBase, Flink

* Modification overhead: 18 to 38 LOC

* Totally 4,652 machine hours with up to 100 physical machines,
each running 20 Docker containers



Evaluation

e ZebraConf reports 57 heterogeneous-unsafe parameters.

* Our manual analysis finds 41 are true problems.

* Categories of these parameters:
* Data transfer format related
* Max limit related
* Timeout related
* Task numbers related

* Unexpected ones



dfs.datanode.balance.max.concurrent.moves

* Limits the max number of threads that a DataNode can use for balancing.
{DataNode 1] .......... { DataNode N }
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[ Balancer }
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dfs.datanode.balance.max.concurrent.moves

* Limits the max number of threads that a DataNode can use for balancing.

moves=1 moves=1

i Balancing
s e
sssss sssss Balancer: 50, DN: 50 14s
Balancer: 1, DN: 1 16.7s

moves=50
a Balancer: 50, DN: 1 154s
[ Balancer } 10x slower than just
using 1 thread



dfs.datanode.balance.max.concurrent.moves

* Limits the max number of threads that a DataNode can use for balancing.

dmoves=1 .
HDFS-7466: Allow different values for Balancing
{DataNode< moves per DataNode
$SS SI- 0 14s
“The correct approach will be to obtain 16.75
{ the value from the DataNode itself” 1545
L Balancer J 10x slower than just
using 1 thread



Conclusion

e ZebraConf reuses existing unit tests to find unsafe parameters.
* We find 41 heterogeneous-unsafe parameters with ZebraConf.
* Need better support for heterogeneous configurations.

* We made ZebraConf publicly available:
https://github.com/StarThinking/ZebraConf/
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