
SmartHarvest: Harvesting Idle CPUs
Safely and Efficiently in the Cloud

Yawen Wang1, Kapil Arya2, Marios Kogias2, Manohar Vanga3,

Aditya Bhandari2, Neeraja Yadwadkar1, Siddhartha Sen2,

Sameh Elnikety2, Christos Kozyrakis1, Ricardo Bianchini2

1

EuroSys 2021

1Stanford University 2Microsoft 3Nokia Bell Labs, Germany

CPU Underutilization in Datacenter Servers

2[1] Cortez et al. “Resource central: Understanding and predicting workloads for improved resource management in large cloud platforms .” SOSP’17

[1]

CPU Underutilization in Datacenter Servers

3[1] Cortez et al. “Resource central: Understanding and predicting workloads for improved resource management in large cloud platforms .” SOSP’17

[1]

60% of the virtual machines (VMs) in Azure
have an average CPU utilization < 20%

CPU Underutilization in Datacenter Servers

4

Reason for low CPU utilization in VMs

• VMs are often oversized for peak load

• Common for user-facing workloads

[1] Cortez et al. “Resource central: Understanding and predicting workloads for improved resource management in large cloud platforms .” SOSP’17

[1]

60% of the virtual machines (VMs) in Azure
have an average CPU utilization < 20%

Prior approaches to increase CPU utilization

5

[2] Iorgulescu, Călin, et al. "Perfiso: Performance isolation for commercial latency-sensitive services.” ATC’18
[3] Lo, David, et al. "Heracles: Improving resource efficiency at scale.” ISCA’15
[4] Ousterhout, Amy, et al. "Shenango: Achieving high CPU efficiency for latency-sensitive datacenter workloads.” NSDI’19

• Use spare CPU resources from latency-sensitive workloads to run
batch processing tasks
• Extensive offline workload profiling (e.g. PerfIso[2])

• Knowledge of application characteristics (e.g. Heracles[3], Shenango[4])

Prior approaches to increase CPU utilization

6

[2] Iorgulescu, Călin, et al. "Perfiso: Performance isolation for commercial latency-sensitive services.” ATC’18
[3] Lo, David, et al. "Heracles: Improving resource efficiency at scale.” ISCA’15
[4] Ousterhout, Amy, et al. "Shenango: Achieving high CPU efficiency for latency-sensitive datacenter workloads.” NSDI’19

• Use spare CPU resources from latency-sensitive workloads to run
batch processing tasks
• Extensive offline workload profiling (e.g. PerfIso[2])

• Knowledge of application characteristics (e.g. Heracles[3], Shenango[4])

Challenge: VMs are opaque boxes in public cloud

Prior approaches to increase CPU utilization

7

[2] Iorgulescu, Călin, et al. "Perfiso: Performance isolation for commercial latency-sensitive services.” ATC’18
[3] Lo, David, et al. "Heracles: Improving resource efficiency at scale.” ISCA’15
[4] Ousterhout, Amy, et al. "Shenango: Achieving high CPU efficiency for latency-sensitive datacenter workloads.” NSDI’19

• Use spare CPU resources from latency-sensitive workloads to run
batch processing tasks
• Extensive offline workload profiling (e.g. PerfIso[2])

• Knowledge of application characteristics (e.g. Heracles[3], Shenango[4])

Challenge: VMs are opaque boxes in public cloud

1. Rely only on monitoring of low-level proxies (e.g. CPU usage)
2. Assume any VM may be latency-sensitive

Proposed Solution: SmartHarvest

8

Proposed Solution: SmartHarvest

• Use online learning to continuously learn and predict future CPU utilization
of opaque-box primary, customer VMs based on past CPU usage

• Safely harvest idle cores to run batch processing jobs inside ElasticVM

• Employ a two-level safeguard to reduce performance impact on primary
VMs when learning misbehaves

• Dynamically allocate cores among VMs to

1. Minimize impact on primary VMs (e.g., no more than 10%)

2. Maximize harvested spare CPU resources

9

Proposed Solution: SmartHarvest

• Use online learning to continuously learn and predict future CPU utilization
of opaque-box primary, customer VMs based on past CPU usage

• Safely harvest idle cores to run batch processing jobs inside ElasticVM

• Employ a two-level safeguard to reduce performance impact on primary
VMs when learning misbehaves

• Dynamically allocate cores among VMs to

1. Minimize impact on primary VMs (e.g., no more than 10%)

2. Maximize harvested spare CPU resources

10

Proposed Solution: SmartHarvest

• Use online learning to continuously learn and predict future CPU utilization
of opaque-box primary, customer VMs based on past CPU usage

• Safely harvest idle cores to run batch processing jobs inside ElasticVM

• Employ a two-level safeguard to reduce performance impact on primary
VMs when learning misbehaves

• Dynamically allocate cores among VMs to

1. Minimize impact on primary VMs (e.g., no more than 10%)

2. Maximize harvested spare CPU resources

11

Proposed Solution: SmartHarvest

• Use online learning to continuously learn and predict future CPU utilization
of opaque-box primary, customer VMs based on past CPU usage

• Safely harvest idle cores to run batch processing jobs inside ElasticVM

• Employ a two-level safeguard to reduce performance impact on primary
VMs when learning misbehaves

• Dynamically allocate cores among VMs to

1. Minimize impact on primary VMs (e.g., no more than 10%)

2. Maximize harvested spare CPU resources

12

A new type of VM: ElasticVM

13

A new type of VM: ElasticVM

• Uses idle cores from primary VMs to runs batch workloads

14

A new type of VM: ElasticVM

• Uses idle cores from primary VMs to runs batch workloads

• Minimum guaranteed resources

• E.g. 1 core, 8GB memory, 10GB SSD

15

A new type of VM: ElasticVM

• Uses idle cores from primary VMs to runs batch workloads

• Minimum guaranteed resources

• E.g. 1 core, 8GB memory, 10GB SSD

• Lower priority than primary VMs

• Its number of assigned physical cores dynamically grows and shrinks

16

A new type of VM: ElasticVM

• Uses idle cores from primary VMs to runs batch workloads

• Minimum guaranteed resources

• E.g. 1 core, 8GB memory, 10GB SSD

• Lower priority than primary VMs

• Its number of assigned physical cores dynamically grows and shrinks

• Configured to have as many virtual cores as the total number of

physical cores on the server

17

High-Level Design of SmartHarvest

18

Primary VM ElasticVM Minroot

EVMAgent

10-core primary VM

Busy Idle

High-Level Design of SmartHarvest

19

Primary VM ElasticVM Minroot

EVMAgent
• Monitor server-wide core usage
• Learn & predict primary VMs CPU usage
• Re-assign cores among VMs

EVMAgent

High-Level Design of SmartHarvest

20

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

High-Level Design of SmartHarvest

21

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖

High-Level Design of SmartHarvest

22

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Idle Buffer

Time window 𝑇𝑖

High-Level Design of SmartHarvest

23

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

End of time window 𝑇𝑖

Actual peak # cores used in 𝑇𝑖

Idle Buffer

High-Level Design of SmartHarvest

24

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

End of time window 𝑇𝑖

Actual peak # cores used in 𝑇𝑖

True CPU peak in 𝑻𝒊 is known

Idle Buffer

High-Level Design of SmartHarvest

25

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

End of time window 𝑇𝑖

Actual peak # cores used in 𝑇𝑖

Full feedback

1 Update model

2 Predict CPU peak for 𝑇𝑖+1

3 Adjust VM CPU size

True CPU peak in 𝑻𝒊 is known

Idle Buffer

High-Level Design of SmartHarvest

26

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖

All cores busy (idle buffer exhausted)

Idle Buffer

High-Level Design of SmartHarvest

27

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖 Safety violation

All cores busy (idle buffer exhausted)

Idle Buffer

High-Level Design of SmartHarvest

28

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖

True CPU peak in 𝑻𝒊 is unknown

Safety violation

All cores busy (idle buffer exhausted)

Idle Buffer

High-Level Design of SmartHarvest

29

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖

True CPU peak in 𝑻𝒊 is unknown

Safety violation

Partial feedback

1 Don’t update model

2 Estimate CPU peak for 𝑇𝑖+1 as

(1 + peak_over_last_sec)

3 Return cores to primary VM

All cores busy (idle buffer exhausted)

Idle Buffer

High-Level Design of SmartHarvest

30

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖

True CPU peak in 𝑻𝒊 is unknown

Safety violation

short-term safeguard

Partial feedback

1 Don’t update model

2 Estimate CPU peak for 𝑇𝑖+1 as

(1 + peak_over_last_sec)

3 Return cores to primary VM

All cores busy (idle buffer exhausted)

Idle Buffer

High-Level Design of SmartHarvest

31

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖

EVMAgent
• Disable harvesting when primary VM experiences

long vCPU wait time
▪ e.g., more than 1% of vCPU wait times > 50 𝜇s

proxy for VM performance

Idle Buffer

High-Level Design of SmartHarvest

32

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖

EVMAgent
• Disable harvesting when primary VM experiences

long vCPU wait time
o e.g., more than 1% of vCPU wait times > 50 𝜇s

Long-term safeguard

Idle Buffer

Predicting CPU Utilization

33

Predicting CPU Utilization

34

Challenge: VM CPU utilizations are constantly changing

Predicting CPU Utilization

• Online learning to continuously learn without offline training

35

Challenge: VM CPU utilizations are constantly changing

Predicting CPU Utilization

• Online learning to continuously learn without offline training

• Fine-grained prediction (25ms) to quickly adapt to changes

36

Challenge: VM CPU utilizations are constantly changing

Predicting CPU Utilization

• Online learning to continuously learn without offline training

• Fine-grained prediction (25ms) to quickly adapt to changes

37

Prediction target

• peak CPU utilization (# cores) of the primary VM for the next 25ms

Challenge: VM CPU utilizations are constantly changing

Predicting CPU Utilization

• Online learning to continuously learn without offline training

• Fine-grained prediction (25ms) to quickly adapt to changes

38

Prediction target

• peak CPU utilization (# cores) of the primary VM for the next 25ms

Features

• {avg, stddev, min, max, median} of # CPU cores (actively monitored)
used by the primary VM in the past 25ms

Challenge: VM CPU utilizations are constantly changing

Predicting CPU Utilization

• Online learning to continuously learn without offline training

• Fine-grained prediction (25ms) to quickly adapt to changes

39

Prediction target

• peak CPU utilization (# cores) of the primary VM for the next 25ms

Features

• {avg, stddev, min, max, median} of # CPU cores (actively monitored)
used by the primary VM in the past 25ms

Most useful set of features

Challenge: VM CPU utilizations are constantly changing

Model for Online Learning

40

Requirements

Model for Online Learning

1. Simple and lightweight neural network

41

Requirements

Model for Online Learning

1. Simple and lightweight neural network

2. Differentiating under-/over-predictions

42

Requirements

Model for Online Learning

1. Simple and lightweight neural network

2. Differentiating under-/over-predictions

43

Requirements

Cost-sensitive multi-class classification

Model for Online Learning

1. Simple and lightweight neural network

2. Differentiating under-/over-predictions

44

Requirements

• Trains a separate linear regression model for each class

Cost-sensitive multi-class classification

Model for Online Learning

1. Simple and lightweight neural network

2. Differentiating under-/over-predictions

45

Requirements

• Trains a separate linear regression model for each class

• Selects the class with the lowest predicted cost

Cost-sensitive multi-class classification

Model for Online Learning

1. Simple and lightweight neural network

2. Differentiating under-/over-predictions

46

Requirements

• Trains a separate linear regression model for each class

• Selects the class with the lowest predicted cost

• Allows flexible cost assignment to update model

Cost-sensitive multi-class classification

Model for Online Learning

1. Simple and lightweight neural network

2. Differentiating under-/over-predictions

47

Requirements

• Trains a separate linear regression model for each class

• Selects the class with the lowest predicted cost

• Allows flexible cost assignment to update model

• Offers fast prediction and update times (e.g. <15µs)

Cost-sensitive multi-class classification

48

if pred_peak > observed_peak:
true_peak = observed_peak

Full-feedback model update

49

− 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5

(ClassLabel - CorrectLabel)

0

2

4

6

8

10 Under-predict ion

Correct predict ion

Over-predict ion

Cost Function

if pred_peak > observed_peak:
true_peak = observed_peak

Full-feedback model update

Over-predicting
classes

Under-predicting
classes

Update
model
with a

cost for
each
class

6-core primary VM

50

− 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5

(ClassLabel - CorrectLabel)

0

2

4

6

8

10 Under-predict ion

Correct predict ion

Over-predict ion

Cost Function

if pred_peak > observed_peak:
true_peak = observed_peak

Full-feedback model update

Over-predicting
classes

Penalize under-predicting classes more
to skew away from aggressive harvesting

Under-predicting
classes

Update
model
with a

cost for
each
class

6-core primary VM

51

− 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5

(ClassLabel - CorrectLabel)

0

2

4

6

8

10 Under-predict ion

Correct predict ion

Over-predict ionUpdate
model
with a

cost for
each
class

Cost Function

if pred_peak > observed_peak:
true_peak = observed_peak

Full-feedback model update

Over-predicting
classes

Penalize under-predicting classes more
to skew away from aggressive harvesting

Under-predicting
classes

E.g. true_peak = 3 (correct class label)
• Class 1: cost = |1-3|+5=7

• Class 2: cost = |2-3|+5=6

• Class 3: cost = |3-3|=0

• Class 4: cost = |4-3|=1

• Class 5: cost = |5-3|=2

• Class 6: cost = |6-3|=3

Classes that were
under-predicting

Classes that were
over-predicting

Correct class

6-core primary VM

Evaluation

• Primary VM workloads
▪ Microsoft Bing IndexServe

▪ Memcached: in-memory key-value store

▪ moses: machine translation application

▪ img-dnn: image recognition application

52

P99 Latency

Evaluation

• Primary VM workloads
▪ Microsoft Bing IndexServe

▪ Memcached: in-memory key-value store

▪ moses: machine translation application

▪ img-dnn: image recognition application

• ElasitcVM workloads
▪ CPUBully (synthetic CPU-bound workload)

53

P99 Latency

Avg. # of cores harvested

Evaluation (cont’d)

• Alternative policies
o FixedBuffer policy

▪ Adjusts primary CPU size to maintain a fixed buffer of idle cores

oPrevPeak policy

▪ Estimates primary CPU peak usage based on the peak from last 25ms

54

Evaluation (cont’d)

• Alternative policies
o FixedBuffer policy

▪ Adjusts primary CPU size to maintain a fixed buffer of idle cores

oPrevPeak policy

▪ Estimates primary CPU peak usage based on the peak from last 25ms

• Testbed
• Two-socket Intel server with Xeon Platinum 8160 processor

• 2.10GHz, 24 cores per socket, 255GB DRAM

• Running the Hyper-V hypervisor

55

Single primary VM co-located with CPUBully

56

10% increase from the
baseline P99 latency

* Each primary VM has 10 cores

57

Single primary VM co-located with CPUBully

7
8

6

5

7
8

6

5

2

3
4

567

78

6

5

58

Single primary VM co-located with CPUBully

7
8

6

5

7
8

6

5

2

3
4

567

78

6

5

59

Single primary VM co-located with CPUBully

7
8

6

5

7
8

6

5

2

3
4

567

78

6

5

Buffer 4 Buffer 7

Buffer 8
Buffer 6

60

PrevPeak often leads to
large increase on P99

Single primary VM co-located with CPUBully

61

Single primary VM co-located with CPUBully

62

Single primary VM co-located with CPUBully

SmartHarvest consistently
harvests 1.5-3.5 cores

without per-app tuning

63

Single primary VM co-located with CPUBully

SmartHarvest consistently
harvests 1.5-3.5 cores

without per-app tuning

SmartHarvest has <10%
impact on P99 across all

workloads

Single primary VM co-located with CPUBully

64

SmartHarvest
✓ improves CPU utilization

✓ Small impact on primary VM

More evaluation results in the paper

• Running realistic batch workloads in ElasticVM

• Harvesting from multiple primary VMs

• Learning window selection

• Cost function comparison

• Effectiveness of safeguards

• System responsiveness vs benefit of learning

65

Conclusion

• SmartHarvest leverages online learning to manage cloud CPU
resources

66

Conclusion

• SmartHarvest leverages online learning to manage cloud CPU
resources

67

➢ Automatically learns and adapts to CPU usage of different applications and
varying load patterns inside opaque-box primary VMs

Conclusion

• SmartHarvest leverages online learning to manage cloud CPU
resources

68

➢ Automatically learns and adapts to CPU usage of different applications and
varying load patterns inside opaque-box primary VMs

➢ Harvests spare CPU cores while minimizing performance impacts on
primary VMs

Conclusion

• SmartHarvest leverages online learning to manage cloud CPU
resources

69

➢ Automatically learns and adapts to CPU usage of different applications and
varying load patterns inside opaque-box primary VMs

➢ Harvests spare CPU cores while minimizing performance impacts on
primary VMs

➢ Achieves improved CPU utilization in the cloud

Conclusion

• SmartHarvest leverages online learning to manage cloud CPU
resources

70

Thank you!

➢ Automatically learns and adapts to CPU usage of different applications and
varying load patterns inside opaque-box primary VMs

➢ Harvests spare CPU cores while minimizing performance impacts on
primary VMs

➢ Achieves improved CPU utilization in the cloud

Contact: yawenw@stanford.edu

71

