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Reason for low CPU utilization in VMs

• VMs are often oversized for peak load

• Common for user-facing workloads
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• Use spare CPU resources from latency-sensitive workloads to run
batch processing tasks
• Extensive offline workload profiling (e.g. PerfIso[2]) 

• Knowledge of application characteristics (e.g. Heracles[3], Shenango[4])
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• Use spare CPU resources from latency-sensitive workloads to run
batch processing tasks
• Extensive offline workload profiling (e.g. PerfIso[2]) 

• Knowledge of application characteristics (e.g. Heracles[3], Shenango[4])

Challenge: VMs are opaque boxes in public cloud

1. Rely only on monitoring of low-level proxies (e.g. CPU usage)
2. Assume any VM may be latency-sensitive
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Proposed Solution: SmartHarvest

• Use online learning to continuously learn and predict future CPU utilization
of opaque-box primary, customer VMs based on past CPU usage

• Safely harvest idle cores to run batch processing jobs inside ElasticVM

• Employ a two-level safeguard to reduce performance impact on primary 
VMs when learning misbehaves

• Dynamically allocate cores among VMs to

1. Minimize impact on primary VMs (e.g., no more than 10%)

2. Maximize harvested spare CPU resources
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A new type of VM: ElasticVM

• Uses idle cores from primary VMs to runs batch workloads

• Minimum guaranteed resources

• E.g. 1 core, 8GB memory, 10GB SSD

• Lower priority than primary VMs

• Its number of assigned physical cores dynamically grows and shrinks

• Configured to have as many virtual cores as the total number of

physical cores on the server
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High-Level Design of SmartHarvest
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Primary VM ElasticVM Minroot

EVMAgent

10-core primary VM

Busy Idle
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Primary VM ElasticVM Minroot

EVMAgent
• Monitor server-wide core usage
• Learn & predict primary VMs CPU usage
• Re-assign cores among VMs

EVMAgent
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Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖
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True CPU peak in 𝑻𝒊 is known

Idle Buffer



High-Level Design of SmartHarvest

25

Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

End of time window 𝑇𝑖

Actual peak # cores used in 𝑇𝑖

Full feedback

1 Update model

2 Predict CPU peak for 𝑇𝑖+1

3 Adjust VM CPU size  

True CPU peak in 𝑻𝒊 is known

Idle Buffer
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Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖

All cores busy (idle buffer exhausted)

Idle Buffer
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Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖 Safety violation

All cores busy (idle buffer exhausted)

Idle Buffer
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Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖

True CPU peak in 𝑻𝒊 is unknown

Safety violation

Partial feedback

1 Don’t update model

2  Estimate CPU peak for 𝑇𝑖+1 as      

(1 + peak_over_last_sec)

3  Return cores to primary VM

All cores busy (idle buffer exhausted)

Idle Buffer
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Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖

True CPU peak in 𝑻𝒊 is unknown

Safety violation

short-term safeguard

Partial feedback

1 Don’t update model

2  Estimate CPU peak for 𝑇𝑖+1 as      

(1 + peak_over_last_sec)

3  Return cores to primary VM

All cores busy (idle buffer exhausted)

Idle Buffer
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Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖

EVMAgent
• Disable harvesting when primary VM experiences 

long vCPU wait time 
▪ e.g., more than 1% of vCPU wait times > 50 𝜇s

proxy for VM performance

Idle Buffer
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Primary VM ElasticVM Minroot

EVMAgent

Predicted peak # cores needed for time window 𝑇𝑖

Time window 𝑇𝑖

EVMAgent
• Disable harvesting when primary VM experiences 

long vCPU wait time
o e.g., more than 1% of vCPU wait times > 50 𝜇s

Long-term safeguard

Idle Buffer
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Challenge: VM CPU utilizations are constantly changing
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Prediction target

• peak CPU utilization (# cores) of the primary VM for the next 25ms

Challenge: VM CPU utilizations are constantly changing
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Prediction target

• peak CPU utilization (# cores) of the primary VM for the next 25ms

Features
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used by the primary VM in the past 25ms
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• Online learning to continuously learn without offline training 

• Fine-grained prediction (25ms) to quickly adapt to changes
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Prediction target

• peak CPU utilization (# cores) of the primary VM for the next 25ms

Features

• {avg, stddev, min, max, median} of # CPU cores (actively monitored) 
used by the primary VM in the past 25ms

Most useful set of features

Challenge: VM CPU utilizations are constantly changing
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Model for Online Learning

1. Simple and lightweight neural network

2. Differentiating under-/over-predictions
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Requirements

• Trains a separate linear regression model for each class 

• Selects the class with the lowest predicted cost

• Allows flexible cost assignment to update model

• Offers fast prediction and update times (e.g. <15µs)

Cost-sensitive multi-class classification
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if pred_peak > observed_peak:
true_peak = observed_peak

Full-feedback model update
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Correct  predict ion

Over-predict ionUpdate
model 
with a 

cost for 
each 
class

Cost Function

if pred_peak > observed_peak:
true_peak = observed_peak

Full-feedback model update

Over-predicting
classes

Penalize under-predicting classes more 
to skew away from aggressive harvesting 

Under-predicting
classes

E.g. true_peak = 3 (correct class label)
• Class 1: cost = |1-3|+5=7

• Class 2: cost = |2-3|+5=6

• Class 3: cost = |3-3|=0

• Class 4: cost = |4-3|=1

• Class 5: cost = |5-3|=2

• Class 6: cost = |6-3|=3

Classes that were 
under-predicting

Classes that were 
over-predicting

Correct class

6-core primary VM



Evaluation 

• Primary VM workloads
▪ Microsoft Bing IndexServe

▪ Memcached: in-memory key-value store

▪ moses: machine translation application 

▪ img-dnn: image recognition application
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Evaluation 

• Primary VM workloads
▪ Microsoft Bing IndexServe

▪ Memcached: in-memory key-value store

▪ moses: machine translation application 

▪ img-dnn: image recognition application

• ElasitcVM workloads
▪ CPUBully (synthetic CPU-bound workload)
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P99 Latency

Avg. # of cores harvested



Evaluation (cont’d)

• Alternative policies
o FixedBuffer policy 

▪ Adjusts primary CPU size to maintain a fixed buffer of idle cores

oPrevPeak policy

▪ Estimates primary CPU peak usage based on the peak from last 25ms
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Evaluation (cont’d)

• Alternative policies
o FixedBuffer policy 

▪ Adjusts primary CPU size to maintain a fixed buffer of idle cores

oPrevPeak policy

▪ Estimates primary CPU peak usage based on the peak from last 25ms

• Testbed
• Two-socket Intel server with Xeon Platinum 8160 processor 

• 2.10GHz, 24 cores per socket, 255GB DRAM

• Running the Hyper-V hypervisor
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Single primary VM co-located with CPUBully
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10% increase from the 
baseline P99 latency

* Each primary VM has 10 cores
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Single primary VM co-located with CPUBully
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PrevPeak often leads to 
large increase on P99 

Single primary VM co-located with CPUBully
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Single primary VM co-located with CPUBully
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Single primary VM co-located with CPUBully

SmartHarvest consistently 
harvests 1.5-3.5 cores 

without per-app tuning
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Single primary VM co-located with CPUBully

SmartHarvest consistently 
harvests 1.5-3.5 cores 

without per-app tuning

SmartHarvest has <10% 
impact on P99 across all 

workloads



Single primary VM co-located with CPUBully
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SmartHarvest
✓ improves CPU utilization

✓ Small impact on primary VM



More evaluation results in the paper

• Running realistic batch workloads in ElasticVM

• Harvesting from multiple primary VMs

• Learning window selection

• Cost function comparison

• Effectiveness of safeguards 

• System responsiveness vs benefit of learning 
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• SmartHarvest leverages online learning to manage cloud CPU
resources
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Thank you!

➢ Automatically learns and adapts to CPU usage of different applications and 
varying load patterns inside opaque-box primary VMs

➢ Harvests spare CPU cores while minimizing performance impacts on 
primary VMs

➢ Achieves improved CPU utilization in the cloud

Contact: yawenw@stanford.edu
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