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distributed datastore
Traditional distributed txs well-known as expensive



Many tx applications exhibit dynamic locality
network functions, peer-to-peer payments …

Example: cellular control plane
manages phone connectivity and
handovers among base stations

Locality 
every phone user repeats txs:
same phone & nearest base-station 

But locality is dynamic
changes at run-time
e.g., user commutes à base-station changes

Observation
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Can state-of-the-art datastores exploit dynamic locality?



State-of-the-art reliable datastores
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Static sharding (e.g., consistent hashing)

Objects placed randomly on fixed nodes

easy to locate and access objects

reliable txs regardless of access pattern

expensive reliable txs
mostly remote accesses

some blocking (control flow, pοinter chasing)

related objects on different shards
costly distributed commit 

tx coordinator
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Adapted from FaSST [OSDI’16]

Cannot exploit locality à expensive reliable txs



Enter Zeus
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Distributed datastore: exploits locality for fast reliable txs
Inspired by multiprocessor’s  hardware transactional memory

Basic idea

Each object has a single node owner = data + exclusive write access
the owner changes dynamically and is tracked by replicated directory

Coordinator executes a tx by acquiring ownership of all its objects
à single-node commit

Ownership stays with coordinator
à future txs on these objects enjoy local accesses 
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Distributed datastore: exploits locality for fast reliable txs
Inspired by multiprocessor’s  hardware transactional memory

Basic idea

Each object has a single node owner = data + exclusive write access
the owner changes dynamically and is tracked by replicated directory

Coordinator executes a tx by acquiring ownership of all its objects
à single-node commit

Ownership stays with coordinator
à future txs on these objects enjoy local accesses 

What are the exact steps?



1. Execute as the owner
a) at object access: if (not owner) get ownership
b) local access 

2. Local commit 
commits tx: traditional single-node commit
(updates not yet replicated)

3. Reliable commit 
completes tx: updating replicas for availability

1. 

Locality-aware txs in Zeus
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How to get ownership reliably?



Ownership protocol
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1)  Coordinator gets ownership from current owner  
2)  Keeps consistent directory replicas

1. Coordinator sends object ownership invalidations
(through a directory replica) to all arbiters

2. Arbiters acknowledge the coordinator directly
3. Coordinator sends validations informing arbiters for acquisition

Conflicts: logical timestamps,  fault tolerance: idempotent replays
as in Hermes [ASPLOS’20]
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Ownership is acquired & coordinator proceeds with tx 
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1)  Coordinator gets ownership from current owner  
2)  Keeps consistent directory replicas

1. Coordinator sends object ownership invalidations
(through a directory replica) to all arbiters

2. Arbiters acknowledge the coordinator directly
3. Coordinator sends validations informing arbiters for acquisition

Conflicts: logical timestamps,  fault tolerance: idempotent replays
as in Hermes [ASPLOS’20]Correctness verified under conflicts and faults

arbiters
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1. Execute as the owner
a) at object access: if (not owner) get ownership
b) local access 

2. Local commit 
commits tx: traditional single-node commit

3. Reliable commit 
completes tx: updating replicas for availability

Locality + ownership stays with coordinator

Locality-aware txs in Zeus
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Locality-aware txs in Zeus

Great! But how efficient is reliable commit?



Reliable commit
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1. Committed tx à no conflicts à fast tx completion
- coordinator sends updates to replicas and waits for ACKs
- read-only txs: no updates à no reliable commit

2. No conflicts à no aborts à pipelined txs (no waiting for replication)
- subsequent txs use local state with certainty & issue updates
- coordinator sequences updates, which replicas apply in order

Fault tolerance: idempotent replays
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1. Committed tx à no conflicts à fast tx completion
- coordinator sends updates to replicas and waits for ACKs
- read-only txs: no updates à no reliable commit

2. No conflicts à no aborts à pipelined txs (no waiting for replication)
- subsequent txs use local state with certainty & issue updates
- coordinator sequences updates, which replicas apply in order

Fault tolerance: idempotent replaysVery efficient!     Correctness verified under faults
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Locality-aware, distributed and reliable

Awesome! Does it translate into performance?



Performance
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6 nodes, 3-way replication, 
Zeus 40Gb (no RDMA) 
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State-of-the-art reliable txs over static sharding: 
cannot exploit dynamic locality 
remote accesses 
costly distributed commit

Zeus’ reliable txs exploit locality via dynamic ownership:
local accesses in the common case 
single-node commit 

- local for read-only txs
- fast and pipelined for write txs

Performance 10s millions txs/second 
up to 2x state-of-the-art 

Bonus: programmability!

Conclusion
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zeus-protocol.com
TLA+ specification, Q&A … 

Reliable txs with locality? Use Zeus!

https://hermes-protocol.com/

