
Zeus
Locality-aware distributed transactions

A. Katsarakis*, Y. Ma†, Z. Tan§, A. Bainbridge, M. Balkwill,
A. Dragojevic, B. Grot*, B. Radunovic, Y. Zhang

*University of Edinburgh, †Fudan University, §UCLA, Microsoft Research
zeus-protocol.com

Thanks to:

https://zeus-protocol.com/

Keep data
in-memory, replicated, sharded
across nodes of a datacenter

Backbone of transactional cloud applications

Demand
distributed reliable transactions (txs)

strongly-consistent and fault-tolerant
high performance

Modern distributed datastores

2

distributed datastore

Keep data
in-memory, replicated, sharded
across nodes of a datacenter

Backbone of transactional cloud applications

Demand
distributed reliable transactions (txs)

strongly-consistent and fault-tolerant
high performance

Modern distributed datastores

3

distributed datastore

Keep data
in-memory, replicated, sharded
across nodes of a datacenter

Backbone of transactional cloud applications

Demand
distributed reliable transactions (txs)

strongly-consistent and fault-tolerant
high performance

Modern distributed datastores

4

distributed datastore

Keep data
in-memory, replicated, sharded
across nodes of a datacenter

Backbone of transactional cloud applications

Demand
distributed reliable transactions (txs)

strongly-consistent and fault-tolerant
high performance

Modern distributed datastores

5

distributed datastore

Keep data
in-memory, replicated, sharded
across nodes of a datacenter

Backbone of transactional cloud applications

Demand
distributed reliable transactions (txs)

strongly-consistent and fault-tolerant
high performance

Modern distributed datastores

6

distributed datastore
Traditional distributed txs well-known as expensive

Many tx applications exhibit dynamic locality
network functions, peer-to-peer payments …

Example: cellular control plane
manages phone connectivity and
handovers among base stations

Locality
every phone user repeats txs:
same phone & nearest base-station

But locality is dynamic
changes at run-time
e.g., user commutes à base-station changes

Observation

7

base-station A

base-station B

Many tx applications exhibit dynamic locality
network functions, peer-to-peer payments …

Example: cellular control plane
manages phone connectivity and
handovers among base stations

Locality
every phone user repeats txs:
same phone & nearest base-station

But locality is dynamic
changes at run-time
e.g., user commutes à base-station changes

Observation

8

Many tx applications exhibit dynamic locality
network functions, peer-to-peer payments …

Example: cellular control plane
manages phone connectivity and
handovers among base stations

Locality
every phone user repeats txs:
same phone & nearest base-station

But locality is dynamic
changes at run-time
e.g., user commutes à base-station changes

Observation

9

base-station A

base-station B

base-station A

base-station B

Many tx applications exhibit dynamic locality
network functions, peer-to-peer payments …

Example: cellular control plane
manages phone connectivity and
handovers among base stations

Locality
every phone user repeats txs:
same phone & nearest base-station

But locality is dynamic
changes at run-time
e.g., user commutes à base-station changes

Observation

10

ha
nd

ov
er

base-station A

base-station B

Many tx applications exhibit dynamic locality
network functions, peer-to-peer payments …

Example: cellular control plane
manages phone connectivity and
handovers among base stations

Locality
every phone user repeats txs:
same phone & nearest base-station

But locality is dynamic
changes at run-time
e.g., user commutes à base-station changes

Observation

11

ha
nd

ov
er

Can state-of-the-art datastores exploit dynamic locality?

State-of-the-art reliable datastores

12

Static sharding (e.g., consistent hashing)

Objects placed randomly on fixed nodes

easy to locate and access objects

reliable txs regardless of access pattern

expensive reliable txs
mostly remote accesses

some blocking (control flow, pοinter chasing)

related objects on different shards
costly distributed commit

tx coordinator

State-of-the-art reliable datastores

13

Static sharding (e.g., consistent hashing)

Objects placed randomly on fixed nodes

easy to locate and access objects

reliable txs regardless of access pattern

expensive reliable txs
mostly remote accesses

some blocking (control flow, pοinter chasing)

related objects on different shards
costly distributed commit

tx coordinator

distributed commit

1. tx: if (p) b++;

remote accesses

Adapted from FaSST [OSDI’16]
Adapted from FaSST [OSDI’16]

distributed commit

1. tx: if (p) b++;

remote accesses

Adapted from FaSST [OSDI’16]

State-of-the-art reliable datastores

14

Static sharding (e.g., consistent hashing)

Objects placed randomly on fixed nodes

easy to locate and access objects

reliable txs regardless of access pattern

expensive reliable txs
mostly remote accesses

some blocking (control flow, pοinter chasing)

related objects on different shards
costly distributed commit

tx coordinator

distributed commit

1. tx: if (p) b++;

remote accesses

Adapted from FaSST [OSDI’16]
Adapted from FaSST [OSDI’16]

distributed commit

1. tx: if (p) b++;

remote accesses

Adapted from FaSST [OSDI’16]

State-of-the-art reliable datastores

15

Static sharding (e.g., consistent hashing)

Objects placed randomly on fixed nodes

easy to locate and access objects

reliable txs regardless of access pattern

expensive reliable txs
mostly remote accesses

some blocking (control flow, pοinter chasing)

related objects on different shards
costly distributed commit

tx coordinator

distributed commit

1. tx: if (p) b++;

remote accesses

Adapted from FaSST [OSDI’16]
Adapted from FaSST [OSDI’16]

Cannot exploit locality à expensive reliable txs

Enter Zeus

16

Distributed datastore: exploits locality for fast reliable txs
Inspired by multiprocessor’s hardware transactional memory

Basic idea

Each object has a single node owner = data + exclusive write access
the owner changes dynamically and is tracked by replicated directory

Coordinator executes a tx by acquiring ownership of all its objects
à single-node commit

Ownership stays with coordinator
à future txs on these objects enjoy local accesses

Enter Zeus

17

Distributed datastore: exploits locality for fast reliable txs
Inspired by multiprocessor’s hardware transactional memory

Basic idea

Each object has a single node owner = data + exclusive write access
the owner changes dynamically and is tracked by replicated directory

Coordinator executes a tx by acquiring ownership of all its objects
à single-node commit

Ownership stays with coordinator
à future txs on these objects enjoy local accesses

Enter Zeus

18

Distributed datastore: exploits locality for fast reliable txs
Inspired by multiprocessor’s hardware transactional memory

Basic idea

Each object has a single node owner = data + exclusive write access
the owner changes dynamically and is tracked by replicated directory

Coordinator executes a tx by acquiring ownership of all its objects
à single-node commit

Ownership stays with coordinator
à future txs on these objects enjoy local accesses

Enter Zeus

19

Distributed datastore: exploits locality for fast reliable txs
Inspired by multiprocessor’s hardware transactional memory

Basic idea

Each object has a single node owner = data + exclusive write access
the owner changes dynamically and is tracked by replicated directory

Coordinator executes a tx by acquiring ownership of all its objects
à single-node commit

Ownership stays with coordinator
à future txs on these objects enjoy local accesses

Enter Zeus

20

Distributed datastore: exploits locality for fast reliable txs
Inspired by multiprocessor’s hardware transactional memory

Basic idea

Each object has a single node owner = data + exclusive write access
the owner changes dynamically and is tracked by replicated directory

Coordinator executes a tx by acquiring ownership of all its objects
à single-node commit

Ownership stays with coordinator
à future txs on these objects enjoy local accesses

What are the exact steps?

1. Execute as the owner
a) at object access: if (not owner) get ownership
b) local access

2. Local commit
commits tx: traditional single-node commit
(updates not yet replicated)

3. Reliable commit
completes tx: updating replicas for availability

1.

Locality-aware txs in Zeus

21

1. Execute as the owner
a) at object access: if (not owner) get ownership
b) local access

2. Local commit
commits tx: traditional single-node commit
(updates not yet replicated)

3. Reliable commit
completes tx: updating replicas for availability

1.

Locality-aware txs in Zeus

22

1. Execute as the owner
a) at object access: if (not owner) get ownership
b) local access

2. Local commit
commits tx: traditional single-node commit
(updates not yet replicated)

3. Reliable commit
completes tx: updating replicas for availability

1.

Locality-aware txs in Zeus

23

How to get ownership reliably?

Ownership protocol

24

1) Coordinator gets ownership from current owner
2) Keeps consistent directory replicas

1. Coordinator sends object ownership invalidations
(through a directory replica) to all arbiters

2. Arbiters acknowledge the coordinator directly
3. Coordinator sends validations informing arbiters for acquisition

Conflicts: logical timestamps, fault tolerance: idempotent replays
as in Hermes [ASPLOS’20]

Ownership protocol

25

1) Coordinator gets ownership from current owner
2) Keeps consistent directory replicas

1. Coordinator sends object ownership invalidations
(through a directory replica) to all arbiters

2. Arbiters acknowledge the coordinator directly
3. Coordinator sends validations informing arbiters for acquisition

Conflicts: logical timestamps, fault tolerance: idempotent replays
as in Hermes [ASPLOS’20]

arbiters

Ownership protocol

26

1) Coordinator gets ownership from current owner
2) Keeps consistent directory replicas

1. Coordinator sends object ownership invalidations
(through a directory replica) to all arbiters

2. Arbiters acknowledge the coordinator directly
3. Coordinator sends validations informing arbiters for acquisition

Conflicts: logical timestamps, fault tolerance: idempotent replays
as in Hermes [ASPLOS’20]

arbiters

Ownership protocol

27

1) Coordinator gets ownership from current owner
2) Keeps consistent directory replicas

1. Coordinator sends object ownership invalidations
(through a directory replica) to all arbiters

2. Arbiters acknowledge the coordinator directly
3. Coordinator sends validations informing arbiters for acquisition

Conflicts: logical timestamps, fault tolerance: idempotent replays
as in Hermes [ASPLOS’20]

arbiters

Ownership protocol

28

1) Coordinator gets ownership from current owner
2) Keeps consistent directory replicas

1. Coordinator sends object ownership invalidations
(through a directory replica) to all arbiters

2. Arbiters acknowledge the coordinator directly
3. Coordinator sends validations informing arbiters for acquisition

Conflicts: logical timestamps, fault tolerance: idempotent replays
as in Hermes [ASPLOS’20]

arbiters

Ownership is acquired & coordinator proceeds with tx

Ownership protocol

29

1) Coordinator gets ownership from current owner
2) Keeps consistent directory replicas

1. Coordinator sends object ownership invalidations
(through a directory replica) to all arbiters

2. Arbiters acknowledge the coordinator directly
3. Coordinator sends validations informing arbiters for acquisition

Conflicts: logical timestamps, fault tolerance: idempotent replays
as in Hermes [ASPLOS’20]

arbiters

Ownership protocol

30

1) Coordinator gets ownership from current owner
2) Keeps consistent directory replicas

1. Coordinator sends object ownership invalidations
(through a directory replica) to all arbiters

2. Arbiters acknowledge the coordinator directly
3. Coordinator sends validations informing arbiters for acquisition

Conflicts: logical timestamps, fault tolerance: idempotent replays
as in Hermes [ASPLOS’20]

arbiters

Ownership protocol

31

1) Coordinator gets ownership from current owner
2) Keeps consistent directory replicas

1. Coordinator sends object ownership invalidations
(through a directory replica) to all arbiters

2. Arbiters acknowledge the coordinator directly
3. Coordinator sends validations informing arbiters for acquisition

Conflicts: logical timestamps, fault tolerance: idempotent replays
as in Hermes [ASPLOS’20]Correctness verified under conflicts and faults

arbiters

32

1. Execute as the owner
a) at object access: if (not owner) get ownership
b) local access

2. Local commit
commits tx: traditional single-node commit

3. Reliable commit
completes tx: updating replicas for availability

Locality + ownership stays with coordinator

Locality-aware txs in Zeus

33

1. Execute as the owner
a) at object access: if (not owner) get ownership
b) local access

2. Local commit
commits tx: traditional single-node commit

3. Reliable commit
completes tx: updating replicas for availability

common
case

Locality + ownership stays with coordinator

Locality-aware txs in Zeus

34

1. Execute as the owner
a) at object access: if (not owner) get ownership
b) local access

2. Local commit
commits tx: traditional single-node commit

3. Reliable commit
completes tx: updating replicas for availability

common
case

Locality-aware txs in Zeus

35

1. Execute as the owner
a) at object access: if (not owner) get ownership
b) local access

2. Local commit
commits tx: traditional single-node commit

3. Reliable commit
completes tx: updating replicas for availability

common
case

Locality-aware txs in Zeus

36

1. Execute as the owner
a) at object access: if (not owner) get ownership
b) local access

2. Local commit
commits tx: traditional single-node commit

3. Reliable commit
completes tx: updating replicas for availability

common
case

Locality-aware txs in Zeus

37

1. Execute as the owner
a) at object access: if (not owner) get ownership
b) local access

2. Local commit
commits tx: traditional single-node commit

3. Reliable commit
completes tx: updating replicas for availability

common
case

Locality-aware txs in Zeus

Great! But how efficient is reliable commit?

Reliable commit

38

1. Committed tx à no conflicts à fast tx completion
- coordinator sends updates to replicas and waits for ACKs
- read-only txs: no updates à no reliable commit

2. No conflicts à no aborts à pipelined txs (no waiting for replication)
- subsequent txs use local state with certainty & issue updates
- coordinator sequences updates, which replicas apply in order

Fault tolerance: idempotent replays

Reliable commit

39

1. Committed tx à no conflicts à fast tx completion
- coordinator sends updates to replicas and waits for ACKs
- read-only txs: no updates à no reliable commit

2. No conflicts à no aborts à pipelined txs (no waiting for replication)
- subsequent txs use local state with certainty & issue updates
- coordinator sequences updates, which replicas apply in order

Fault tolerance: idempotent replays

Reliable commit

40

1. Committed tx à no conflicts à fast tx completion
- coordinator sends updates to replicas and waits for ACKs
- read-only txs: no updates à no reliable commit

2. No conflicts à no aborts à pipelined txs (no waiting for replication)
- subsequent txs use local state with certainty & issue updates
- coordinator sequences updates, which replicas apply in order

Fault tolerance: idempotent replays

Reliable commit

41

1. Committed tx à no conflicts à fast tx completion
- coordinator sends updates to replicas and waits for ACKs
- read-only txs: no updates à no reliable commit

2. No conflicts à no aborts à pipelined txs (no waiting for replication)
- subsequent txs use local state with certainty & issue updates
- coordinator sequences updates, which replicas apply in order

Fault tolerance: idempotent replaysVery efficient! Correctness verified under faults

Recap: txs in Zeus

42

Locality-aware, distributed and reliable

Recap: txs in Zeus

43

Locality-aware, distributed and reliable

Recap: txs in Zeus

44

Locality-aware, distributed and reliable

Recap: txs in Zeus

45

Locality-aware, distributed and reliable

Recap: txs in Zeus

46

Locality-aware, distributed and reliable

Recap: txs in Zeus

47

Locality-aware, distributed and reliable

Awesome! Does it translate into performance?

Performance

48

6 nodes, 3-way replication,
Zeus 40Gb (no RDMA)

Performance

49

M
ill

io
n

tx
s /

 se
c

Ideal
(all local)

Zeus
(real-world locality)

Handovers

6 nodes, 3-way replication,
Zeus 40Gb (no RDMA)

Performance

50

Zeus: within 9% of ideal

M
ill

io
n

tx
s /

 se
c

Ideal
(all local)

Zeus
(real-world locality)

Handovers

6 nodes, 3-way replication,
Zeus 40Gb (no RDMA)

9%

Performance

51

Zeus: within 9% of ideal

M
ill

io
n

tx
s /

 se
c

Ideal
(all local)

Zeus
(real-world locality)

Handovers

6 nodes, 3-way replication,
Zeus 40Gb (no RDMA)

% write txs needing ownership

TATP

9%

Performance

52

Zeus: within 9% of ideal

M
ill

io
n

tx
s /

 se
c

Ideal
(all local)

Zeus
(real-world locality)

Handovers

6 nodes, 3-way replication,
Zeus 40Gb (no RDMA)

% write txs needing ownership

TATP

2x

9%

Up to 40M.tx/s and 2x state-of-the-art
FaSST [OSDI’16], FaRM [SOSP’15]

which use 56Gb RDMA

Performance

53

Zeus: within 9% of ideal

M
ill

io
n

tx
s /

 se
c

Ideal
(all local)

Zeus
(real-world locality)

Handovers

6 nodes, 3-way replication,
Zeus 40Gb (no RDMA)

% write txs needing ownership

TATP

2x

9%

Up to 40M.tx/s and 2x state-of-the-art
FaSST [OSDI’16], FaRM [SOSP’15]

which use 56Gb RDMAPaper: more benchmarks, ownership, latency ...

State-of-the-art reliable txs over static sharding:
cannot exploit dynamic locality
remote accesses
costly distributed commit

Zeus’ reliable txs exploit locality via dynamic ownership:
local accesses in the common case
single-node commit

- local for read-only txs
- fast and pipelined for write txs

Performance 10s millions txs/second
up to 2x state-of-the-art

Bonus: programmability!

Conclusion

54

State-of-the-art reliable txs over static sharding:
cannot exploit dynamic locality
remote accesses
costly distributed commit

Zeus’ reliable txs exploit locality via dynamic ownership:
local accesses in the common case
single-node commit

- local for read-only txs
- fast and pipelined for write txs

Performance 10s millions txs/second
up to 2x state-of-the-art

Bonus: programmability!

Conclusion

55

zeus-protocol.com
TLA+ specification, Q&A …

https://hermes-protocol.com/

State-of-the-art reliable txs over static sharding:
cannot exploit dynamic locality
remote accesses
costly distributed commit

Zeus’ reliable txs exploit locality via dynamic ownership:
local accesses in the common case
single-node commit

- local for read-only txs
- fast and pipelined for write txs

Performance 10s millions txs/second
up to 2x state-of-the-art

Bonus: programmability!

Conclusion

56

zeus-protocol.com
TLA+ specification, Q&A …

https://hermes-protocol.com/

State-of-the-art reliable txs over static sharding:
cannot exploit dynamic locality
remote accesses
costly distributed commit

Zeus’ reliable txs exploit locality via dynamic ownership:
local accesses in the common case
single-node commit

- local for read-only txs
- fast and pipelined for write txs

Performance 10s millions txs/second
up to 2x state-of-the-art

Bonus: programmability!

Conclusion

57

zeus-protocol.com
TLA+ specification, Q&A …

https://hermes-protocol.com/

State-of-the-art reliable txs over static sharding:
cannot exploit dynamic locality
remote accesses
costly distributed commit

Zeus’ reliable txs exploit locality via dynamic ownership:
local accesses in the common case
single-node commit

- local for read-only txs
- fast and pipelined for write txs

Performance 10s millions txs/second
up to 2x state-of-the-art

Bonus: programmability!

Conclusion

58

zeus-protocol.com
TLA+ specification, Q&A …

Reliable txs with locality? Use Zeus!

https://hermes-protocol.com/

